Skip to main content
Log in

A basic molecular model for the H2 histamine receptor. Part 1

  • Published:
Molecular Engineering

Abstract

A 3D model of the canine H2 receptor was built and analysed. This model was constructed using primary sequence comparisons and three-dimensional homology building with bacteriorhodopsin serving as a template. The energy analysis of the interaction between the N3H+ form and the N1H+ form of histamine with the receptor shows that both have the same binding affinity for the H2 receptor, but only the N3H+ form provokes structural changes. The calculated potential energies are consistent with the published binding data and suggest that Asp 98 is the principal residue for ligand recognition. On the basis of sequence alignment studies we postulate that Glu 270 in helix 7 may be important for activation of the H2 receptor. Docking studies of the N3H+ folded conformation in our model show that an intramolecular hydrogen bond between N3 and the amino group of the histamine molecule is broken, and the histamine then adopts a conformation similar to the N3H+ extended form to interact optimally with the H2 receptor. Mutations were made in the H2 receptor model to mimic published experimental point mutations. The interactions of the mutated receptor models with histamine are consistent with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A.Oriowo and J. A.Bevan:J. Cardiovasc. Pharmacol. 10, 76 (1987).

    PubMed  Google Scholar 

  2. U.Trendelenburg:J. Pharmacol. 130, 450 (1960).

    Google Scholar 

  3. C. F.Code: in C. R.Ganellin and M. E.Parsons (eds.),Pharmacology of Histamine Receptors, Wright, London, 217 (1982).

    Google Scholar 

  4. A. S. F.Ash and A. O.Schild:Br. J. Pharmacol. Chemother. 27, 427 (1966).

    Google Scholar 

  5. J. W.Black, W. A. M.Duncan, G. J.Durant, C. R.Ganellin, and M. E.Parson:Nature (London)236, 385 (1972).

    Google Scholar 

  6. J. M.Arrang, M.Garbag, and J. C.Schwartz:Nature (London)302, 832 (1983).

    Google Scholar 

  7. W. F.Reynolds and C. W.Tzeng.Can. J. Biochem. 55, 576 (1977).

    PubMed  Google Scholar 

  8. C. R.Ganellin:J. Pharm. Pharmacol. 25, 787 (1973).

    PubMed  Google Scholar 

  9. H.Weinstein, E.Chou, C. L.Johnson, S.Kang and J. P.Green:Mol. Pharmacol. 12, 738 (1976).

    PubMed  Google Scholar 

  10. I.Gantz, M.Shaffer, J.DelValle, C.Logsdon, V.Campbell, M.Uhler, and T.Yamada.Proc. Natl. Acad. Sci. USA 88, 429 (1991).

    PubMed  Google Scholar 

  11. I.Gantz, M.DelValle, L.Wang, T.Tashine, G.Munzert, Y.Guo, Y.Konda Y, and T.Yamada:J. Biol. Chem. 267, 20841 (1992).

    Google Scholar 

  12. N. J. M.Birdsall:Trends Pharmacol. Sci. 12, 9 (1991).

    PubMed  Google Scholar 

  13. J. M.Baldwin:EMBO J. 12, 1693 (1993).

    PubMed  Google Scholar 

  14. S.Trumpp-Kallmeyer, J.Hoflack, A.Bruinvels, and M.Hilbert:J. Med. Chem. 35, 3448 (1992).

    PubMed  Google Scholar 

  15. P.Cronet, C.Sander, and G.Vriend:Protein Eng. 6, 59 (1993).

    PubMed  Google Scholar 

  16. R.Henderson, J.Baldwin, T. H.Ceska, F.Zemlin, E.Beckmann, and K.Dowing:J. Mol. Biol. 213, 899 (1990).

    PubMed  Google Scholar 

  17. T. W.Kahn and D. M.Engelman:Biochemistry 31, 6144 (1992).

    PubMed  Google Scholar 

  18. V.Unger and F. X.Schertler:Biophys. J. 68, 776 (1995).

    Google Scholar 

  19. L.Oliveira, A. E. M.Paiva, and G.Vriend:J. Computer Aided Molec. Design 7, 649 (1993).

    Google Scholar 

  20. J. P.Stewart:J. Comput. Chem. 10, 221 (1989).

    Google Scholar 

  21. J. J.Dannenberg and E. M.Evlet:International J. Quantum Chem. 44, 869 (1992).

    Google Scholar 

  22. C.Olea-Azar, J.Parra-Mouchet, and G. G.Lunt:Molecular Engineering 6, 307 (1996).

    Google Scholar 

  23. M. J. S.Dewar, E. G.Zoebisch, E. F.Healey, and J. J.Stewart:J. Am. Chem. Soc. 105, 3902 (1985).

    Google Scholar 

  24. C.Olea-Azar, M.Ortells, and G.Lunt: XXth Neuroscience Congress, Sept. 1994, Miami, USA,Soc. Neurosci. Abstr. 20, 1550 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olea-Azar, C., Parra-Mouchet, J., Cassels, B.K. et al. A basic molecular model for the H2 histamine receptor. Part 1. Mol Eng 6, 297–306 (1996). https://doi.org/10.1007/BF01886378

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01886378

Key words

Navigation