Skip to main content
Log in

Arctic margin gravity highs: Deeper meaning for sediment depocenters?

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

Morphologic, gravity, and seismic reflection/refraction data from ca. 10,000 km of Arctic passive continental margins suggest that the numerous oval free-air gravity anomalies, their +50–150 mGal extrema typically located just landward of shelf breaks, are caused by combinations of rapidly deposited Plio-Pleistocene glacial marine sediment loads, older post-breakup sediments, and perhaps causally related density anomalies (mascons) in the underlying oceanic crust. Dispersed seismicity associated with some gravity highs may reflect ongoing brittle, flexural adjustment to the loads. Multi-channel-seismic-controlled depocenter models for several prominent highs (including the Hornsund gravity high re-examined here) suggest that sediments alone do not suffice to explain the gravity highs, unless depocenter seismic velocities have been significantly underestimated. A flexural backstripping model for the Hornsund anomaly only roughly replicates observed gravity. Subjacent 'mascons', if present below some depocenters, may be caused by (1) anomalous subsidence of initially formed dense/thin crust; (2) depocenter blanketing of early-formed crust, mitigating hydrothermal fracturing and related density reduction; or (3) metastable phase transitions, converting basalt/gabbro to denser phases (Neugebauer–Spohn hypothesis), while cracks close or fill under the increased pressures and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous, 1988, Gravity anomaly map of the Continenal Margin of Eastern Canada (Map), Geological Survey of Canada, Map 1708A, scale 1:5 000 000, Ottawa.

  • Basham, P. W., Forsyth, D. A. and Wetmiller, R. J., 1977, The seismicity of northern Canada, Can. J. Earth Sci. 14: 1646–1667.

    Google Scholar 

  • Boucher, G., 1978, Rotation of Alaska and the opening of the Canada Basin, U.S. Geological Survey Open-file report 78–96, 12 pp.

  • Bungum, H., Alsaker, A., Kvamme, L. B. and Hansen, R. A., 1991, Seismicity and seismotectonics of Norway and nearby continental shelf areas, J. Geophys. Res. 96: 2249–2265.

    Google Scholar 

  • Cherkis, N. Z. and Vogt, P. R., 1995, Regional bathymetry of the northern Norwegian-Greenland Sea (chart). In K. Crane and A. Solheim (eds.), Seafloor atlas of the Northern Norwegian-Greenland Sea, Norsk Polarinst. Med., Oslo, p. 137.

    Google Scholar 

  • Childers, V. A., Peter, M. F. and Brozena, J. M. 1997, Error analysis of the NRL airborne gravity system, Proc. Int. Symp. on Kinetic Systems in Geodesy, Geomatics and Navigation, Banff, Canada, pp. 625–632.

  • Christensen, N. I. and Salisbury, M. H., 1975, Structure and composition of the lower oceanic crust, Rev. Geophys. Space Phys. 13: 57–86.

    Google Scholar 

  • Eldholm, O., Faleide, J. I. and Myhre, A. M., 1987, Continent-ocean transition at the western Barents Sea/Svalbard continental margin, Geology 15: 1118–1122.

    Google Scholar 

  • Eldholm, O., Skogseid, J., Sundvor, E. and Myhre, A. M., 1990, The Norwegian-Greenland Sea. In A. Grantz, G. L. Johnson and J. F. Sweeney (eds), The Arctic Ocean Region, Vol. L., The Geology of North America, Geol. Soc. Amer., Boulder, Colo., pp. 351–364.

    Google Scholar 

  • Faleide, J. I., 1995, Free-air gravity field of the northern Norwegian-Greenland Sea, in Crane, K., and A. Solheim (ed.), Seafloor atlas of the Northern Norwegian-Greenland Sea, Norsk Polarinst. Med., 137, Oslo, pp. 17–20.

  • Faleide, J. I., Vågnes, E. and Gudlaugsson, S. T., 1993, Late Mesozoic-Cenozoic evolution of the south-western Barents Sea in a regional rift-shear tectonic setting, Mar. Pet. Geol. 10: 185–296.

    Google Scholar 

  • Faleide, J. I., Solheim, A. Fiedler, A., Hjelstuen, B. O., Andersen, E. S. and Vanneste, K., 1996, Late Cenozoic evolution of the western Barents Sea-Svalbard continental margin, Global Planet. Change 12: 53–74.

    Google Scholar 

  • Fujita, K., Cook, D. B., Hasegawa, H., Forsyth, D. and Wetmiller, R., 1990, Seismicity and focal mechanisms of the Arctic region and the North American plate boundary in Asia. In A. Grantz, G. L. Johnson and J. F. Sweeney (eds.), The Arctic Ocean Region, Vol. L, The Geology of North America, Geol. Soc. Amer., Boulder, Colo., pp. 79–100.

    Google Scholar 

  • Gabrielsen, R. H., 1989, Reactivation of faults on the Norwegian continental shelf and its implications for earthquake occurrence. In S. Gregersen and P. W. Basham (eds.), Earthquakes at North-Atlantic passive margins: neotectonics and postglacial rebound, Kluwer Academic Publishers, Dordrecht, pp. 67–90.

    Google Scholar 

  • Gardner, G. H. F., Gardner, L. W. and Gregory, A. R., 1974, Formation velocity and density-The diagnostic basics for stratigraphic traps, Geophysics 39: 770–780.

    Google Scholar 

  • Grønlie, G. and Talwani, M., 1982, The free-air gravity field of the Norwegian-Greenland Sea and adjacent areas, Earth Evolution Sci. 2: 79–103.

    Google Scholar 

  • Hamilton, E. L., 1978, Sound velocity-density relations in sea-floor sediments and rocks, J. Acoust. Soc. Am. 63: 366–377.

    Google Scholar 

  • Hjelstuen, B. O., Elverhøi, A. and Faleide, J. I., 1996, Cenozoic erosion and sediment yield in the drainage area of the Storfjorden fan, Global Planet. Change 12: 95–117.

    Google Scholar 

  • Houtz, R. E., 1980, comparison of velocity-depth characteristics in western North Atlantic and Norwegian Sea sediments, J. Acoust. Soc. Am. 68: 1409–1414.

    Google Scholar 

  • Jackson, H. R., Faleide, J. I. and Eldholm, O., 1990, Crustal structure of the sheared southwestern Barents Sea continental margin, Mar. Geol. 93: 119–146.

    Google Scholar 

  • King, E. L., Sejrup, H.P., Haflidason, H., Elverhøi, A. and Aarseth, I., 1996, Quaternary seismic stratigraphy of the North Sea fan; glacially-fed gravity flow aprons, hemipelagic sediments,and large submarine slides, Mar. Geol. 130: 229–315.

    Google Scholar 

  • Larsen, H. C., 1990, The East Greenland shelf. In A. Grantz, G. L. Johnson and J. F. Sweeney (eds), The Arctic Ocean Region, Vol. L, The Geology of North America, Geol. Soc. Amer., Boulder, Colo., pp. 185–210.

    Google Scholar 

  • Larter, R. D., Rebesco, M., Vanneste, L. E., Gamboa, L. A. P. and Barker, P. F., 1997, Cenozoic tectonic, sedimentary and glacial history of the continental shelf west of Graham Land, Antarctic Peninsula, in Geology and Seismic Stratigraphy of the Antarctic Margin, Part 2, Antarctic Research Series 71: 1–27.

    Google Scholar 

  • Laxon, S. and McAdoo, D., 1994, Arctic ocean gravity field derived from ERS-1 satellite altimetry, Science 265: 621–624.

    Google Scholar 

  • Laxon, S. and McAdoo, D., 1998, Polar marine gravity from satellite altimetry, University College, London, http:msslsp.mssl.ucl.ac.uk/people/swl/polarg ravity.html.

    Google Scholar 

  • Lindwall, D. A., 1988, A two-dimensional seismic investigation of crustal structure under the Hawaiian Islands near Oahu and Kauai, J. Geophys. Res. 93: 12107–12122.

    Google Scholar 

  • Max, M. D., Ghidella, M., Kovacs, L., Paterlini, M. and Valladeres, J. A., 1999, Geology of the Argentine continental shelf and margin from aeromagnetic survey, Marine Petrol. Geol. 16: 41–64.

    Google Scholar 

  • Myhre, A. M. and Eldholm, O., 1988, The western Svalbard margin (74°N–80°N), Mar. Pet. Geol. 5: 134–156.

    Google Scholar 

  • Nafe, J. E. and Drake, C. L., 1957, Variation with depth in shallow and deep water marine sediments of porosity, density and velocities of compressional and shear waves, Geophysics 22: 523–552.

    Google Scholar 

  • Neugebauer, H. J. and Spohn, T., 1981, Metastable phase transitions and progressive decline of gravitational energy: aspects of Atlantic type margin dynamics, AGU Geodynamics Ser. 6: 166–183.

    Google Scholar 

  • Nicolas, A., 1985, Novel type of crust produced during continental rifting, Nature 315: 112–115.

    Google Scholar 

  • Olesen, O. G., Gellein, J., Habrekka, H., Kihle, O., Skilbrei, J. R. and Smethurst, M. A., 1997, Magnetic anomaly map, Norway and adjacent ocean areas, Trondheim, Geol. Survey of Norway (map).

    Google Scholar 

  • Perry, R. K., Fleming, H. S., Weber, J. R., Kristoffersen, Y., Hall, J. K., Grantz, A., Johnson, G.L., Cherkis, N. Z. and Larsen, B., 1985, Bathymetry of the Arctic Ocean, Geol. Soc. Amer. Map and Chart Ser., MC 56.

  • Purdy, G. M. and Ewing, J., 1986, Seismic structure of the ocean crust. In P. R. Vogt and B. T. Tucholke (eds.), The Western North Atlantic Region, Vol M., The Geology of North America, Geol. Soc. Amer., Boulder, Colo., pp. 313–330.

    Google Scholar 

  • Rabinowitz, P. D., 1981, Gravity measurements bordering passive continental margins. In Dynamics of Passive Margins, Geodynamics Series, Vol. 6, Am. Geophys. Union, pp. 91–115.

  • Reid, I. and Jackson, R. R., 1981, Oceanic spreading rate and crustal thickness, Mar. Geophys. Res. 5: 165–172.

    Google Scholar 

  • Sandwell, D. T. and Smith, W. H. F., 1997, Marine gravity anomaly from Geosat and ERS-1 satellite altimetry, J. Geophys. Res. 102: 10039–10054.

    Google Scholar 

  • Sobczak, L. W., 1975, Gravity anomalies and passive continental margins, Canada and Norway. In C. J. Yorath, E. R. Parker and D. J. Glass (eds), Canada's Continental Margins and Offshore Petroleum Explorations, Mem. 4, Can. Soc. Pet. Geol., Calgary, pp. 743–761.

    Google Scholar 

  • Sobczak, L. W., 1989, Stratigraphy and tectonic significance of Cretaceous volcanism in the Queen Elizabeth Islands, Canadian Arctic Archipelago: Discussion, Can. J. Earth Sci. 26: 2736–2739.

    Google Scholar 

  • Sobczak, L. W., Mayr, U. and Sweeney, J. F., 1986, Crustal section across the polar continent-ocean transition in Canada, Can. J. Earth Sci. 23: 608–621.

    Google Scholar 

  • Sobczak, L. W., Hearty, D. B., Forsberg, R., Kristoffersen, Y., Eldholm, O. and May, S. D., 1990, Gravity from 64°N to the North Pole. In A. Grantz, G. L. Johnson and J. F. Sweeney (eds.), The Arctic Ocean Region, Vol. L, The Geology of North America, Geol. Soc. Amer., Boulder, Colo., pp. 101–118.

    Google Scholar 

  • Sobczak, L. W., Halpenny, J. F. and Henderson, D. M., 1991, Gravity interpretation along seismic refraction lines surveyed near the Canadian Ice Island during 1985, Geol. Surv. Canada Paper 90-12, 23 pp.

  • Spohn, T. and Neugebauer, H. J., 1978, Metastable phase transition models and their bearing on the development of Atlantic-type geosynclines, Tectonophysics 50: 387–412.

    Google Scholar 

  • Stein, S., Cloetingh, S., Sleep, N. H. and Wortel, R., 1989, Passive margin earthquakes, stresses, and rheology. In S. Gregersen and P.W. Basham (eds.), Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, Kluwer Academic Publishers, Dordrecht, pp. 231–259.

    Google Scholar 

  • Stephenson, R. A., Coffin, K. C., Lane, L. S. and Dietrich, J. R., 1994, Crustal structure and tectonics of the southeastern Beaufort Sea continental margin, Tectonics 13: 389–400.

    Google Scholar 

  • Stephenson, R. A. and Smolyaninova, E. I., 1999, Neotectonics and seismicity in the south-eastern Beaufort Sea, polar continental margin of north-western Canada, J. Geodyn. 27: 175–190.

    Google Scholar 

  • Talwani, M. and Eldholm, O., 1977, Evolution of the Norwegian-Greenland Sea, Geol. Soc. Amer. Bull. 88: 969–999.

    Google Scholar 

  • Talwani, M., Ewing, J., Sheridan, E., Holbrook, W. S. and Glover, L., III, 1995, The EDGE experiment and the U.S. East Coast magnetic anomaly, In E. Banda (eds.), Rifted Ocean-Continent Boundaries, Kluwer Academic Publishers, Dordrecht, p. 155–181.

    Google Scholar 

  • Turcotte, D. L., Ahern, J. L. and Bird, J. M., 1977, The state of stress at continental margins, Tectonophysics 42: 1–28.

    Google Scholar 

  • Verhoef, J., Roest, W. R., MacNab, R., Arkani-Hamed, J. and Members of the Project Team, 1996, Magnetic anomalies of the Arctic and North Atlantic Oceans and adjacent land areas (CD-ROM), Geological Survey of Canada Open File 3125a.

  • Vogt, P. R., 1986, Geophysical and geochemical signatures and plate tectonics. In B. G. Hurdle (ed.), The Nordic Seas, Springer, New York, pp. 413–662.

    Google Scholar 

  • Vogt, P. R. and Perry, R. K., 1978, Post-rifting accretion of continental margins in the Norwegian-Greenland and Labrador seas: Morphologic evidence (Abs), EOS 59: 120.

    Google Scholar 

  • Vogt, P. R. and Jung, W.-Y., 1988, Glacial-marine sediment depocenters on high-latitude continental margins-Possible effects on gravity, seismicity, lithospheric flexure, and continental reconstructions (abs.), Alfred Wegener Conference on Geology of Polar Oceans: Arctic vs. Antarctic, Bremen, Germany, pp. 129–131.

  • Vogt, P. R., Johnson, G. L. and Kristjansson, L., 1980, Morphology and magnetic anomalies north of Iceland, J. Geophys. 47: 67–80.

    Google Scholar 

  • Vogt, P. R., Crane, K. and Sundvor, E., 1994, Deep Pleistocene iceberg plowmarks on the Yermak Plateau: Sidescan and 3.5 kHz evidence for thick calving ice fronts and a possible marine ice sheet in the Arctic Ocean, Geology 22: 403–406.

    Google Scholar 

  • Vogt, P. R., Cherkashev, G., Ginsburg, G., Ivanov, G., Milkov, A., Crane, K., Lein, L., Sundvor, E., Pimenov, N. and Egorov, A., 1997, Hâkon Mosby mud volcano provides unusual example of venting, EOS 78: 549, 556–557.

    Google Scholar 

  • Vogt, P. R., Jung, W.-Y. and Brozena, J., 1998, Arctic margin gravity highs remain puzzling, EOS 79: 601, 605–606.

    Google Scholar 

  • Vorren, T. O., Laberg, J. S., Blaume, F., Dowdeswell, J., Kenyon, N. H., Mienert, N., Rumohr, J. and Werner, G., 1998, The Norwegian-Greenland Sea continental margins: Morphology and late Quaternary sedimentary processes and environment, Quat. Sci. Rev. 17: 273–302.

    Google Scholar 

  • Walcott, R. I., 1972, Gravity, flexure, and the growth of sedimentary basins at a continental edge, Geol. Soc. Am. Bull. 83: 1845–1848.

    Google Scholar 

  • Watts, A. B., 1988, Gravity anomalies, crustal structure and flexure of the lithosphere at the Baltimore Canyon Trough, Earth Planet. Sci. Lett. 89: 221–238.

    Google Scholar 

  • Watts, A. B. and ten Brink, U. S., 1989, Crustal structure, flexure, and subsidence history of the Hawaiian Islands, J. Geophys. Res. 94: 10473–10500.

    Google Scholar 

  • Watts, A. B. and Fairhead, J. D., 1997, Gravity anomalies and magmatism along the western continental margin of the British Isles, J. Geol. Soc. London 154: 523–529.

    Google Scholar 

  • Watts, A. B. and Ryan, W. B. F., 1976, Flexure of the lithosphere and continental margin basins, Tectonophysics 36: 25–44.

    Google Scholar 

  • Watts, A. B. and Stewart, J., 1998, Gravity anomalies and segmentation of the continental margin offshore West Africa, Earth Planet Sci. Lett. 156: 239–252.

    Google Scholar 

  • Watts, A. B, ten Brink, U. S., Buhl, P. and Brocher, T. M., 1985, A multichannel seismic structure study of lithosphere flexure across the Hawaiian-Emperor seamount chain, Nature 315: 105–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, P.R., Jung, WY. & Brozena, J. Arctic margin gravity highs: Deeper meaning for sediment depocenters?. Marine Geophysical Researches 20, 459–477 (1998). https://doi.org/10.1023/A:1004775228851

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004775228851

Navigation