Skip to main content
Log in

Oblique subduction of the Gagua Ridge beneath the Ryukyu accretionary wedge system: Insights from marine observations and sandbox experiments

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

The Gagua Ridge, carried by the Philippine Sea Plate, is subducting obliquely beneath the southernmost Ryukyu Margin. Bathymetric swath-mapping, performed during the ACT survey (Active Collision in Taiwan), indicates that, due to the high obliquity of plate convergence, slip partitioning occurs within the Ryukyu accretionary wedge. A transcurrent fault, trending N95° E, is observed at the rear of the accretionary wedge. Evidence of right lateral motion along this shear zone, called the Yaeyama Fault, suggests that it accommodates part of the lateral component of the oblique convergence. The subduction of the ridge disturbs this tectonic setting and significantly deforms the Ryukyu Margin. The ridge strongly indents the front of the accretionary wedge and uplifts part of the forearc basin. In the frontal part of the margin, directly in the axis of the ridge, localized transpressive and transtensional structures can be observed superimposed on the uplifted accretionary complex. As shown by sandbox experiments, these N330° E to N30° E trending fractures result from the increasing compressional stress induced by the subduction of the ridge. Analog experiments have also shown that the reentrant associated with oblique ridge subduction exhibits a specific shape that can be correlated with the relative plate motion azimuth.

These data, together with the study of the margin deformation, the uplift of the forearc basin and geodetic data, show that the subduction of the Gagua Ridge beneath the accretionary wedge occurs along an azimuth which is about 20° less oblique than the convergence between the PSP and the Ryukyu Arc. Taking into account the opening of the Okinawa backarc basin and partitioning at the rear of the accretionary wedge, convergence between the ridge and the overriding accretionary wedge appears to be close to N345° E and thus, occurs at a rate close to 9 cm yr−1. As a result, we estimate that a motion of 3.7 cm yr−1±0.7 cm should be absorbed along the transcurrent fault. Based on these assumptions, the plate tectonic reconstruction reveals that the subducted segment of the Gagua Ridge, associated with the observable margin deformations, could have started subducting less than 1 m.y. ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellier, O. and Sebrier, M., 1995 Is the slip rate variation on the Great Sumatran Fault accomodated by fore-arc stretching?, Geophys. Res. Lett. 22: 1969–1972.

    Google Scholar 

  • Collot, J. Y. and Fisher, M. A., 1989, Formation of forearc basins by collision between seamounts and accretionary wedges: an example from the New-Hebrides subduction zone, Geology 17: 930–933.

    Google Scholar 

  • Collot, J. Y. and Davy, B., 1998, Forearc structures and tectonic regimes at the oblique subduction zone between the Hikurangi Plateau and the southern Kermadec margin, J. Geophys. Res. 103(B1): 623–650.

    Google Scholar 

  • Dahlen, F. A. and Suppe, J., 1984, 'Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb theory', J. Geophys. Res. 89: 10,087–10,101.

    Google Scholar 

  • Dahlen, F. A., 1984, Noncohesive critical Coulomb wedges: an exact solution, J. Geophys. Res. 89: 10,125–10,133.

    Google Scholar 

  • Davis, D., Suppe, J., and Dahlen, F. A., 1983 Mechanics of fold-and-thrust belts and Accretionary wedges, J. Geophys. Res. 88(B2): 1153–1172.

    Google Scholar 

  • Deschamps, A., Lallemand, S. E. and Collot, J. Y., 1997, The tectonic significance of the Gagua Ridge near Taiwan, abstract in Tectonics of East Asia (TEA) International Conference, Chung-Li, Taiwan, 3–5 November.

  • Diament, M., Harjono, H., Karta, K., Deplus, C., Dahrin, D., Zen, Jr M. T., Gerard, M., Lassal, O., Martin, A. and Malod, J., 1992, Mentawai fault zone off Sumatra: A new key to the geodynamics of western Indonesia, Geology 20: 259–262.

    Google Scholar 

  • Dominguez, S., Lallemand, S. E. and Malavieille, J., 1994, New results from sandbox modeling of seamount subduction and possible applications, abstract, AGU Fall Meeting, San Fransisco, December 5–9, EOS, p. 671.

  • Dominguez, S., Lallemand, S. E. and Malavieille, J., 1995, Physical sandbox modeling of seamount subduction, effects on the tectonic accretionary wedges, abstract EUG 8, Strasbourg, April 9–13.

  • Dominguez, S., Lallemand, S. E. and Malavieille, J., 1998, Upper plate deformation associated with seamount subduction, Tectonophysics 293: 207–224.

    Google Scholar 

  • Dominguez, S., Malavieille, J. and Lallemand, S. E., 1999, Deformation of margins in response to seamount subduction — insight from sandbox experiments, Tectonics, in press.

  • Fitch, T. J., 1972, Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the Western Pacific, J. Geophys. Res. 77(23): 4432–4460.

    Google Scholar 

  • Heki, H., 1996, Horizontal and vertical crustal movements from three-dimensional very long baseline interferometry kinematic reference frame: Implication for the reversal timescale revision, J. Geophys. Res. 101(B2): 3187–3198.

    Google Scholar 

  • Hilde, T. W. C. and Lee, C. S., 1984, Origin and evolution of the West Philippine basin: A new interpretation, Tectonophysics 102: 85–104.

    Google Scholar 

  • Hsu, S. K., Liu, S. Y., Liu, C. S., Chyu, C. T., Lallemand, S., Sibuet, J. C., Wang, C., Karp, B. and the ACT Scientific Crew, 1996, New compilation of magnetic and gravimetric data around Taiwan, abstract in: AGU Fall Meeting, December 15–19, 1996, San Fransisco, EOS, Transacrions, AGU 77(46): 732.

    Google Scholar 

  • Hsu, S. K., Liu, C. S., Shyu, C. T., Liu, S. Y., Lallemand, S. E., Sibuet, J. C., Wang, C., Reed, D. and Karp, B., 1998, New gravity and magnetic anomaly maps in the Taiwan-Luzon region and their preliminary interpretation, TA0, in press.

  • Imanishi, M., Kimata, F., Inamori, N., Miyajima, R., Okuda, T., Takai, K. and Hirahara, K., 1996, Horizontal displqcements by GPS measurements at the Okinawa-Sakishima Islands (1994–1995)', Earthquake 2(49): 417–421.

    Google Scholar 

  • Kizaki, K., 1986, Geology and tectonics of the Ryukyu Islands, Tectonophysics 125: 193–207.

    Google Scholar 

  • Kuramoto, S. and Konishi, S., 1989, The southwest Ryukyu Arc is a migrating microplate (forearc sliver), Tectonophysics 163, 75–91.

    Google Scholar 

  • Lallemand, S. E., Collot, J. Y., Pelletier, B., Rangin, C., Cadet, J. P., 1990, Impact of oceanic asperities on the tectogenesis of modern convergent margins, Oceanol. Acta 10: 17–30.

    Google Scholar 

  • Lallemand, S. E., Malavieille, J. and Calassou, S., 1992, Effects of oceanic ridge subduction on accretionary wedges: experimental modeling and marine observations, Tectonics 11(6): 1301–1313.

    Google Scholar 

  • Lallemand, S., Schnürle, P. and Malavieille, J., 1994, Coulomb theory applied to accretionary and non accretionary wedges: possible causes for tectonic erosion and/or frontal accretion, J. Geophys. Res. 99: 12033–12055.

    Google Scholar 

  • Lallemand, S. E., Liu, C. S. and the ACT scientific crew, 1997, Swath bathymetry mapping reveals details of the active arccontinent collision offshore Taiwan, EOS Trans. AGU 78(17): 173–175.

    Google Scholar 

  • Lallemand, S. and Liu, C. S., 1998, Geodynamic implications of present-day kinematics in the southern Ryukyus, J. G. S. C. 41: 551–564.

    Google Scholar 

  • Lallemand, S. E., Liu, C. S., Dominguez, S., Schnurle, P., Malavieille, J. and the ACT scientific crew, 1999, Trench parallel stretching and folding of forearc basins and lateral migration of accretionary wedge in the southern Ryukyus: a case of strain partition caused by oblique convergence, Tectonics, 18: 231–247.

    Google Scholar 

  • Le Pichon, X., Huchon, P. and Barrier, E., 1985, Geoid and evolution of the western margin of the Pacific Ocean. In: Nasu, N. (ed.), Formation of Active Margins. Terra Publ., Tokyo, pp. 3–42.

    Google Scholar 

  • Letouzey, J. and Kimura, L., 1985, Okinawa Trough genesis: Structure and evolution of a back-arc basin developed in a continent, Mar. Petrol. Geol. 2: 111–130.

    Google Scholar 

  • Lewis, S. D., Ladd, J. W. and Bruns, T. R., 1988, Structural development of an accretionary prism by thrust and strike-slip faulting: Shumagin region, Aleutian Trench, Geol. Soc. Am. Bull. 100: 767–782.

    Google Scholar 

  • Malavieille, J., 1984, Modélisation experimentale des chevauchements imbriqués: Application aux chaînes de montagnes, Bull. Soc. Géol. Fr. 7: 129–138.

    Google Scholar 

  • Malavieille, J., Larroque, C., Lallemand, S. E., Stephan, J. F, 1991, Experimental modelling of accretionary wedges, Terra Abstr. 3: 367.

    Google Scholar 

  • Malod, J. A., Mustafa-Kemal, B., Beslier, M. O., Deplus, C., Diament, M., Karta, K., Mauffret, A., Patriat, P., Pubellier, M., Regnault, H., Aritonang, P. and Zen, M. Jr., 1993, Deformation of the fore-arc basin northwest of Sumatra; a response to oblique subduction, Comptes Rendus de l'Académie des Sciences, Serie 2, Mecanique, Physique, Chimie, Sciences de l'Univers, Sciences de la terre 316(6): 791–797.

    Google Scholar 

  • McCaffrey, R., 1992, Oblique plate convergence, slip vectors, and forearc deformation, J. Geophys. Res. 97(B6): 8905–8915.

    Google Scholar 

  • Moore, G. F. and Sender, K. L., 1995, Fracture zone collision along the South Panama margin, Geological Soc. America, Special paper 295: 201–212.

    Google Scholar 

  • Park, J. O., Tsuru, T., Kaneda, Y., Kono, Y., Kodaira, S., Takahashi, N. and Kinoshita, H., 1999, A subducting seamount beneath the Nankai accretionary prism off Shikoku, southwestern Japan, Geophysical Research Letters 26: 931–934.

    Google Scholar 

  • Ryan, H. F. and Scholl, D. W., 1989, 'The evolution of forearc structures along an oblique convergent margin, Central Aleutian Arc', Tectonics 8: 497–516.

    Google Scholar 

  • Seno, T., Stein, S., Gripp, A., 1993, A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data, J. Geophys. Res. 98: 17941–17948.

    Google Scholar 

  • Scholl, D. W., Vallier, T. L. and Stevenson, A. J., 1983, Arc, forearc, and trench sedimentation and tectonics; Amlia corridor of the Aleutian Ridge, in Studies in Continental Margin Geology, Mem. 34. In Watkins, J. S. and Drake, C. L. (eds), American Association of Petroleum Geologists, Tulsa, Oklaoma, pp. 413–439.

    Google Scholar 

  • Schnürle, P., Liu, C. S., Lallemand, S. E. and Reed, D. L., 1998, Structural insight into the south Ryukyu Margin: Effects of the subducting Gagua Ridge, Tectonophysics 288: 237–250.

    Google Scholar 

  • Sibuet, J. C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J. P., Hilde, T. W. C., Kimura, M., Chiao, L., Y., Marsset, B., Müller, C. and Stephan, J. F., 1987, Back-arc extension in the Okinawa Trough, J. Geophys. Res. 92(B13): 14041–14063.

    Google Scholar 

  • Sibuet, J. C., Deffontaines, B., Hsu Shu-Khun, Thareau N., Le Formal, J. P., Liu, C. S. and ACT party, 1998, Okinawa trough backarc basin: Early tectonic and magmatic evolution, J. Geophys. Res. 130: 30245–30267.

    Google Scholar 

  • Wessel, P. and Smith, W. H. F., 1991, Free software helps map and display data, EOS Trans. AGU 72: 441.

    Google Scholar 

  • Yu, S. B., Chen, H. Y. and Kuo, L. C., 1997, Velocity field of GPS stations in the Taiwan area, Special issue of Tectonophysics on Active Collision in Taiwan 274(1/3) 41–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominguez, S., Lallemand, S., Malavieille, J. et al. Oblique subduction of the Gagua Ridge beneath the Ryukyu accretionary wedge system: Insights from marine observations and sandbox experiments. Marine Geophysical Researches 20, 383–402 (1998). https://doi.org/10.1023/A:1004614506345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004614506345

Navigation