Skip to main content
Log in

Calibration of diatoms along a nutrient gradient in Florida Everglades Water Conservation Area-2A, USA

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The relationship between diatom taxa preserved in surface soils and environmental variables at 31 sites in Water Conservation Area 2A (WCA-2A) of the Florida Everglades was explored using multivariate analyses. Surface soils were collected along a phosphorus (P) gradient and analyzed for diatoms, total P, % nitrogen (N), %carbon (C), calcium (Ca), and biogenic silica (BSi). Phosphorus varied from 315-1781 μg g-1, and was not found to be correlated with the other geochemical variables. Canonical correspondence analysis (CCA) was used to examine which environmental variables correlated most closely with the distributions in diatom taxa. Canonical correspondence analysis with forward selection, constrained and partial CCA, and Monte Carlo permutation tests of significance show the most significant changes in diatom assemblages along the P gradient (p < 0.01), with additional species differences correlated with soil C, N, Ca, and BSi.

Weighted-averaging (WA) regression and calibration models of diatom assemblages to P and BSi were developed. The diatom-based inference model for soil [P] had a high apparent r2 (0.86) with RMSEboot = 218 μg g-1. Indicator diatom species identified by assessing species WA optima and WA tolerance to [P], such as Nitzschia amphibia and N. palea for high [P] (~1300-1400 μ g-1) and Achnanthes minutissima var. scotica and Mastogloia smithii for low [P] (~400-600 μg g-1), may be useful as monitoring tools for eutrophication in WCA-2A as well as other areas of the Everglades. Diatom assemblages analyzed by cluster analysis were related to location within WCA-2A, and dominant taxa within clusters are discussed in relation to the geochemical variables measured as well as hydrology and pH. Diversity of diatom assemblages and a ‘Disturbance Index’ based on diatom data are discussed in relation to the historically P-limited Everglades ecosystem. Diatom assemblages should be very useful for reconstructions of [P] through time in the Florida Everglades, provided diatoms are well preserved in soil cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, N. J., B. Rippey & C. E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia 253: 357–366.

    Google Scholar 

  • Austin, M. P. & L. Orloci, 1966. Geometric models in ecology II. An evaluation of some ordination techniques. J. Ecol. 54: 217–227.

    Google Scholar 

  • Bennett, P. C., D. I. Siegel, B. M. Hill & P. H. Glaser, 1991. Fate of silicate minerals in a peat bog. Geology 19: 328–331.

    Google Scholar 

  • Bennion, H., S. Juggins & N. J. Anderson, 1996. Predicting epilimnetic phosphorus concentrations using an improved diatombased transfer function and its application to lake eutrophication management. Environ. Sci. Technol. 30: 2004–2007.

    Google Scholar 

  • Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data. Technical Guide 5, Quaternary Research Assoc. Cambridge:161–254.

    Google Scholar 

  • Browder, J. A., P. J. Gleason & D. R. Swift, 1994. Periphyton in the Everglades: Spatial variation, environmental correlates, and ecological implications. In Davis S. M. & J. C. Ogden (eds), Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, FL: 379–418.

    Google Scholar 

  • Canadian Society of Soil Science (CSSS), (1993). In Carter M. R. (ed.), Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, FL: 1–823.

    Google Scholar 

  • Charles, D. F. & J. P. Smol, 1994. Long-term chemical changes in lakes: Quantitative inferences using biotic remains in the sediment record. In Baker L. (ed), Environmental Chemistry of Lakes and Reservoirs, Advances in Chemistry Series 237. American Chemical Society: 3–31.

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Austr. J. Ecol. 18: 117–143.

    Google Scholar 

  • Conley, D. J., 1988. Biogenic silica as an estimate of siliceous microfossil abundance in Great Lake sediments. Biogeochemistry 6: 161–179.

    Google Scholar 

  • Connell, J., 1978. Diversity in tropical rainforests and coral reefs. Science 199: 1302–1310.

    Google Scholar 

  • Cooper, S. R., 1993. A 2,500 yr history of anoxia and eutrophication in Chesapeake Bay. Estuaries 16: 617–626.

    Google Scholar 

  • Cooper, S. R., 1995. Chesapeake Bay watershed historical land use: Impacts on water quality and diatom communities. Ecol. Appl. 5: 703–723.

    Google Scholar 

  • Craft, C. B. & C. J. Richardson, 1993a. Peat accretion and N, P and organic C accumulation in nutrient enriched and unenriched Everglades peatlands. Ecol. Appl. 3: 446–458.

    Google Scholar 

  • Craft, C. B. & C. J. Richardson, 1993b. Peat accretion and phosphorus accumulation along a eutrophication gradient in the northern Everglades. Biogeochemistry 22: 133–156.

    Google Scholar 

  • Cumming, B. F., S. E. Wilson, R. I. Hall & J. P. Smol, 1995. Diatoms from British Columbia (Canada) lakes and their relationship to salinity, nutrients and other limnological variables. In Lange-Bertalot H. (ed.), Bibliotheca diatomologica 31, J. Cramer. 71 pp.

  • David, P.G., 1996. Changes in plant communities relative to hydrologic conditions in the Florida Everglades. Wetlands 16: 15–23.

    Google Scholar 

  • Dixit, S. S., B. F. Cumming, H. J. B. Birks, J. P. Smol, J. C. Kingston, A. J. Uutala, D. F. Charles & K. E. Camburn, 1993. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. J. Paleolim. 8: 27–47.

    Google Scholar 

  • Dixit, S. S. & J. P. Smol, 1994. Diatoms as indicators in the environmental monitoring and assessment program – surface waters (EMAP-SW). Environ. Monit. Assess. 31: 275–306.

    Google Scholar 

  • Funkhauser, J. W. & W. R. Evitt, 1959. Preparation techniques for acid insoluble microfossils. Micropaleontology 5: 369–375.

    Google Scholar 

  • Grimshaw, H. J., M. Rosen, D. R. Swift, K. Rodberg & J. M. Noel, 1993. Marsh phosphorus concentrations, phosphorus content and species composition of Everglades periphyton communities. Archiv fur Hydrobiologie 128: 257–276.

    Google Scholar 

  • Hall, R. I. & J. P. Smol. 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biol. 27: 417–434.

    Google Scholar 

  • Hustedt, F., 1927–1930. Die Kieselalgen Deutschlands, Österreichs und der Schweiz (3 vols), In Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Band 7, Die Kieselalgen. Akademische Verlagsgesellschaft.

  • Jensen, J. E., S. R. Cooper & C. J. Richardson, 1998. Development of a calibration model of modern pollen along a nutrient gradient in Everglades Water Conservation Area-2A, U.S.A. Wetlands, in review.

  • Kingston, J. C., 1982. Association and distribution of common diatoms in surface samples from northern Minnesota peatlands. Nova Hedwigia 73: 333–345.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae (4 vols). In Ettl H., H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa Band 2/1–4. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Light, S. S. & J. W. Dineen, 1994. Water control in the Everglades: a historical perspective. In Davis S. M. & J. C. Ogden (eds), Everglades: the Ecosystem and its Restoration. St. Lucie Press. Delray Beach, FL: 47–84.

    Google Scholar 

  • Line, J. M., C. J. F. ter Braak & H. J. B. Birks, 1994. WACALIB version 3.3 – a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. J. Paleolim. 10: 147–152.

    Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.

    Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.

    Google Scholar 

  • Ludlam, S. D., S. Feeney & M. S. V. Douglas, 1996. Changes in the importance of lotic and littoral diatoms in a high arctic lake over the last 191 yrs. J. Paleolim. 16: 187–204.

    Google Scholar 

  • McCormick, P. V., M. J. Chimney & D. R. Swift, 1997. Diel oxygen profiles and water column community metabolism in the Florida Everglades, U.S.A. Archiv fur Hydrobiologie 140: 117–129.

    Google Scholar 

  • McCormick, P. V. & M. B. O'Dell, 1996. Quantifying periphyton responses to phosphorus in the Florida Everglades: a synopticexperimental approach. J. N. Am. Benthol. Soc. 15: 450–468.

    Google Scholar 

  • McCormick, P. V., P. S. Rawlik, K. Lurding, E. P. Smith & F. H. Sklar, 1996. Periphyton-water quality relationships along a nutrient gradient in the northern Florida Everglades. J. N. Am. Benthol. Soc. 15: 433–499.

    Google Scholar 

  • McCormick, P. V., R. B. E. Shuford III, J. G. Backus & W. C. Kennedy, 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, U.S.A. Hydrobiologia 362: 185–208.

    Google Scholar 

  • McCormick, P. V. & R. J. Stevenson, 1998. Periphyton as a tool for ecological assessment and management in the Florida Everglades. J. Phycol. 34: 726–733.

    Google Scholar 

  • Moser, K. A., G. M. MacDonald & J. P. Smol, 1996. Applications of freshwater diatoms to geographical research. Progr. Phys. Geogr. 20: 21–52.

    Google Scholar 

  • Newman, S., J. B. Grace & J. W. Koebel, 1996. Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: Implications for Everglades restoration. Ecol. Appl. 6: 774–783.

    Google Scholar 

  • Odum, E. P., J. T. Finn & E. H. Franz, 1979. Perturbation theory and the subsidy-stress gradient. BioScience 29: 349–352.

    Google Scholar 

  • Palmer, M. W., 1993. Putting things in better order: the advantages of canonical correspondence analysis. Ecology 74: 2215–2230.

    Google Scholar 

  • Pan, Y. & R. J. Stevenson, 1996. Gradient analysis of diatom assemblage in western Kentucky wetlands. J. Phycol. 32: 222–232.

    Google Scholar 

  • Pan, Y., R. J. Stevenson, P. Vaithiyanathan, J. Slate & C. J. Richardson, 1997. Using experimental and observational approaches to determine causes of algal changes in the Everglades. In Richarson C. J. (ed.), Annual Report: Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades. Duke Wetland Center publication 97–03. School of the Environment, Duke University. Chapter 2: 1–43.

  • Patrick, R. & C. W. Reimer, 1966 & 1975. The Diatoms of the United States. Vols. 1 & 2. Monographs of the Academy of Natural Sciences of Philadelphia, Number 13. 688 & 213 pp.

  • Qualls, R. G. & C. J. Richardson, 1995. Forms of soil phosphorus along a nutrient enrichment gradient in the northern Everglades. Soil Sci. 160: 183–198.

    Google Scholar 

  • Raschke, R. L., 1993. Diatom (Bacillariophyta) community response to phosphorus in the Everglades National Park, USA. Phycologia 32: 48–58.

    Google Scholar 

  • Reddy, K. R., W. F. DeBusk, Y. Wang, R. DeLaune & M. Koch., 1991. Physico-chemical properties of soils in the Water Conservation Area 2 of the Everglades. Final Report submitted to the South Florida Water Management District, West Palm Beach, FL. 204 pp.

  • Richardson, C. J., S. Qian, C. B. Craft & R. G. Qualls, 1997a. Predictive models for phosphorus retention in wetlands. Wetlands Ecol. Man. 4: 159–175.

    Google Scholar 

  • Richardson, C. J., P. Vaithiyanathan, J. G. Qualls & C. Stow, 1997b. Dosing study chemistry analysis: four-yr response (1992–1996) of Everglades sloughs to increased concentrations of PO4: operation of experimental field mesocosms and water quality analysis. In Richarson C. J. (ed.), Annual Report: Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades. Duke Wetland Center publication 97–03. School of the Environment, Duke University. Chapter 15: 1–65.

  • Romanowicz, E. A. & C. J. Richardson, 1997a. Hydrologic investigation of WCA-2A. In Richarson C. J. (ed.), Annual Report: Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades. Duke Wetland Center publication 97–03. School of the Environment, Duke University. Chapter 12: 1–29.

  • Romanowicz, E. A. & C. J. Richardson, 1997b. Temporal and spatial variations in water surface elevations in Water Conservation Area (2-A), Everglades, South Florida. EOS, Transactions, American Geophysical Union supplement 78: 172–173.

    Google Scholar 

  • Romanowicz, E. A., C. J. Richardson & P. Vaithiyanathan, 1996. Evidence for differential ground-water flow inputs and multiple surface-water flow domains in the northern Everglades (Water Conservation Area 2-A), Florida. EOS, Transactions, American Geophysical Union supplement 77: 140.

    Google Scholar 

  • Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press. 117 pp.

  • Smol, J. P., 1992. Paleolimnology: an important tool for effective ecosystem management. J. Aquatic Ecosyst. Health 1: 49–58.

    Google Scholar 

  • Stoermer, E. F., N. A. Andresen & C. L. Schelske, 1992. Diatom succession in the recent sediments of Lake Okeechobee, Florida, U.S.A. Diatom Res. 7: 367–386.

    Google Scholar 

  • Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R. W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R. Munro & I. Renberg, 1991. The Surface Waters Acidification Project Palaeolimnology Programme: modern diatom/lake-water chemistry data-set. ENSIS Publishing, London, 86 pp.

    Google Scholar 

  • Swift, D. R. & R. B. Nicholas, 1987. Periphyton and water quality relationships in the Everglades Water Conservation Areas: 1978–1982. Technical Publication 87–2. South Florida Water Management District, West Palm Beach, FL. 49 pp.

    Google Scholar 

  • Technicon Industrial Systems, 1988. Phosphorus, Total. TRAACS 800 Method, Bran & Luebbe Industrial Method No. 787–86T.

  • ter Braak, C. J. F., 1995. Ordination. In Jongman R. H. J., C. J. F. ter Braak & O. F. R. Van Tongeren (eds), Data Analysis in Community and Landscape Ecology. Cambridge University Press: 91–173.

  • ter Braak, C. J. F., 1990a. CANOCO – Version 3.10. Unpublished computer program, Agricultural Mathematics Group, 6700 AC Wageningen.

  • ter Braak, C. J. F., 1990b. Update notes. CANOCO – Version 3.10. Unpublished computer program, Agricultural Mathematics Group, 6700 AC Wageningen.

  • ter Braak, C. J. F., 1988. Partial canonical correspondence analyses. In Brock H. H. (ed.), Classification and Related Methods of Data Analysis. North-Holland, Amsterdam: 551–558.

  • ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector method for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sci. 57: 255–289.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA), 1983. Methods for Chemical Analysis of Water and Wastes. USEPA. Cincinnati, Ohio. 521 pp.

    Google Scholar 

  • Vaithiyanathan, P. & C. J. Richardson, 1997. Nutrient profiles in the Everglades: Examination along the phosphorus gradient. Sci. Total Environ. 205: 81–95.

    Google Scholar 

  • Vaithiyanathan, P., J. Zahina, S. R. Cooper & C. J. Richardson, 1997. Examination of the seed bank along a eutrophication gradient in the Northern Everglades. In Richarson C. J. (ed.), Annual Report: Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades. Duke Wetland Center publication 97–03. School of the Environment, Duke University. Chapter 10: 1–14.

  • Venables, W. N. & B. D. Ripley, 1994. Modern Applied Statistics with S-Plus. Springer-Verlag. 462 pp.

  • Walker, I. R., A. J. Levesque, L. C. Cwynar & A. F. Lotter, 1997. An expanded surface-water paleotemperature inference model for use with fossil midges from eastern Canada. J. Paleolimnol. 18: 165–178.

    Google Scholar 

  • Whitmore, T. J., 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34: 882–895.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, S.R., Huvane, J., Vaithiyanathan, P. et al. Calibration of diatoms along a nutrient gradient in Florida Everglades Water Conservation Area-2A, USA. Journal of Paleolimnology 22, 413–437 (1999). https://doi.org/10.1023/A:1008049224045

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008049224045

Navigation