Skip to main content
Log in

The NO2-O3 system at sub-ppm concentrations: Influence of temperature and relative humidity

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The stoichiometry and kinetics of the reaction of NO2 with O3 at sub-ppm concentration level have been investigated as a function of temperature and relative humidity. The experiments were performed in a continuous flow reactor using chemiluminescent and wet chemical methods of analysis.

The rate constant found can be described by the Arrhenius expression: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaik% dacaGGUaGaaGyoaiaaiEdacqGHXcqScaaIWaGaaiOlaiaaigdacaaI% 0aGaaiykaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacqGHsislca% aIXaGaaG4maaaakiaabwgacaqG4bGaaeiCaiaacIcadaWcgaqaaiaa% cIcacqGHsislcaaIYaGaaGOnaiaaikdacaaIWaGaeyySaeRaaGyoai% aaicdacaGGPaaabaGaamivaiaacMcacaqGGaGaae4yaiaab2gadaah% aaWcbeqaaiaabodaaaGccaqGGaWaaSGbaeaacaqGTbGaae4BaiaabY% gacaqGLbGaae4yaiaabwhacaqGSbGaaeyzamaaCaaaleqabaGaaeyl% aiaabgdaaaaakeaacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaaaa% aaaaaa!62A3!\[(2.97 \pm 0.14) \times 10^{ - 13} {\text{exp}}({{( - 2620 \pm 90)} \mathord{\left/ {\vphantom {{( - 2620 \pm 90)} {T){\text{ cm}}^{\text{3}} {\text{ }}{{{\text{molecule}}^{{\text{ - 1}}} } \mathord{\left/ {\vphantom {{{\text{molecule}}^{{\text{ - 1}}} } {{\text{s}}^{{\text{ - 1}}} }}} \right. \kern-\nulldelimiterspace} {{\text{s}}^{{\text{ - 1}}} }}}}} \right. \kern-\nulldelimiterspace} {T){\text{ cm}}^{\text{3}} {\text{ }}{{{\text{molecule}}^{{\text{ - 1}}} } \mathord{\left/ {\vphantom {{{\text{molecule}}^{{\text{ - 1}}} } {{\text{s}}^{{\text{ - 1}}} }}} \right. \kern-\nulldelimiterspace} {{\text{s}}^{{\text{ - 1}}} }}}}\] and are independent of the relative humidity. As commonly encountered in previous studies a lower-than-two reaction stoichiometry is observed.

Heterogeneous reactions occurring at the reactor wall seem to be essential in the reaction mechanism. The NO3 wall conversion to NO2 and the N2O5 wall scavenging in the presence of H2O are suggested to account for the observed stoichiometric factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adema, E. H., 1979, Ozone interference in the determination of nitrogen dioxide by a modified manual Saltzman method, Anal. Chem. 51, 1002–1006.

    Google Scholar 

  • Atkinson, R., Lloyd, A. C., and Winges, L., 1982, An updated chemical mechanism for hydrocarbon NO x /SO2 photo-oxidations suitable for inclusion in atmospheric simulation models, Atmos. Environ. 16, 1341–1355.

    Google Scholar 

  • Baulch, D. L., Cox, R. A., Hampson, R. F., Jr., Kerr, J. A., Troe, J., and Watson, R. T., 1980, Evaluated kinetic and photochemical data for atmospheric chemistry, J. Phys. Chem. Ref. Data 9, 295–471.

    Google Scholar 

  • Becker, K. H., Schurath, V. and Seitz, H., 1974, Ozone-olefin reactions in the gas-phase, 1. Rate constants and activation energies, Int. J. Chem. Kinet. 6, 725–739.

    Google Scholar 

  • Calvert, J. G. and Stockwell, W. R., 1983, Acid generation in the troposphere by gas-phase chemistry, Environ. Sci. Technol. 17, 428A-443A.

    Google Scholar 

  • Cox, R. A. and Coker, G. B., 1983, Kinetics of the reaction of nitrogen dioxide with ozone, J. Atmos. Chem. 1, 53–63.

    Google Scholar 

  • Cox, R. A. and Penkett, S. A., 1983, Formation of atmospheric acidity, In: S., Beilke and A. J., Elshout (eds.) Acid Deposition, Proceedings of the CEC Workshop organized as part of the concerted action ‘Physico-chemical behaviour of atmospheric pollutants’, Berlin, 9 September 1982, D. Reidel, Dordrecht, pp. 56–81.

    Google Scholar 

  • Davis, D. D., Prusazcyk, J., Dwyer, M., and Kim, P., 1974, A stop-flow time-of-flight mass spectrometry kinetic study. Reaction of ozone with nitrogen dioxide and sulfur dioxide, J. Phys. Chem. 78, 1775–1779.

    Google Scholar 

  • Ford, H. W., Doyle, G. J., and Endow, N., 1957, Rate constants at low concentrations, I. Rate of reaction of ozone with nitrogen dioxide, J. Chem. Phys. 26, 1336.

    Google Scholar 

  • Graham, R. A. and Johnston, H. S., 1974, Kinetics of the gas-phase reaction between ozone and nitrogen dioxide, J. Chem. Phys. 60, 4628–4629.

    Google Scholar 

  • Graham, R. A. and Johnston, H. S., 1978, The photochemistry of NO3 and the kinetics of the N2O5-O3 system, J. Phys. Chem. 82, 254–268.

    Google Scholar 

  • Heikes, B. G. and Thompson, A. S., 1983, Effects of heterogeneous process on NO3, HONO and HNO3 chemistry in the troposphere, J. Geophys. Res. 88, 10883–10895.

    Google Scholar 

  • Herschbach, D. R., Johnston, H. S., Pitzer, K. S., and Powell, R. E., 1956, Theoretical pre-exponential factors of twelve bimolecular reactions. J. Chem. Phys. 25, 736–741.

    Google Scholar 

  • Huie, R. A. and Herron, J. T., 1974, The rate constant for the reaction O3+NO2=O2+NO3 over the temperature range 259–362 K, Chem. Phys. Lett. 27, 411–414.

    Google Scholar 

  • Jones, C. L. and Seinfeld, J. H., 1983, The oxidation of NO2 to nitrate day and night. Atmos. Environ. 17, 2370–2373.

    Google Scholar 

  • Morris, E. D., Jr. and Niki, H., 1973, Reaction of dinitrogen pentoxide with water, J. Phys. Chem. 77, 1929–1932.

    Google Scholar 

  • NEN 2042, 1982, Preparation of calibration gas mixtures by means of permeation tubes, NNI, Delft.

  • NEN 2045, 1981, The calibration of measuring methods for nitrogen monoxide, nitrogen dioxide and ozone by means of gas-phase titration, NNI, Delft.

  • NPR 2047, 1982, Preparation of low and constant ozone concentrations in air, NNI, Delft.

  • Perry, R. H. and Chilton, C. H., 1973, Chemical Engineers Handbook, 5th edn., McGraw-Hill, New York.

    Google Scholar 

  • Platt, U., Perner, D., Schröder, J., Kessler, C., and Toenissen, A., 1981, The diurnal variation of NO3, J. Geophys. Res. 86, 11965–11970.

    Google Scholar 

  • Platt, U. F., Winer, A. M., Biermann, H. W., Atkinson, R., and Pitts, J. N., Jr., 1984, Measurement of nitrate radical concentrations in continental air, Environ. Sci. Technol. 18, 365–369.

    Google Scholar 

  • Richards, L. W., 1983, Comments on ‘the oxidation of NO2 to nitrate day and night’, Atmos. Environ. 17, 397–402.

    Google Scholar 

  • Stedman, D. H. and Niki, H., 1973, Kinetics and mechanism of the photolysis of nitrogen dioxide in air, J. Phys. Chem. 77, 2604–2609.

    Google Scholar 

  • Ten Brink, H. M., Mallant, R. K. A. M. and Van de Vate, J. F., 1980, The role of aerosol in air pollution chemistry, Paper presented at the ‘5th International Clean Air Congress’, Buenos Aires, 20–26 October.

  • Tuazon, E. C., Atkinson, R., Plum, N., Winer, A. M. and Pitts, Jr., J. N., 1983, The reaction of gas phase N2O5 with water vapor, Geophys. Res. Letts. 10, 953–956.

    Google Scholar 

  • Van de Vate, J. F., 1980, Investigations into the dynamics of aerosols in enclosures as used for air pollution studies, PhD Thesis, Agricultural University, Wageningen, pp. 24–30.

    Google Scholar 

  • Wu, C. H., Morris, E. D., Jr. and Niki, H., 1973, The reaction of nitrogen dioxide with ozone, J. Phys. Chem. 77, 2507–2511.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhees, P.W.C., Adema, E.H. The NO2-O3 system at sub-ppm concentrations: Influence of temperature and relative humidity. J Atmos Chem 2, 387–403 (1985). https://doi.org/10.1007/BF00130750

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00130750

Key words

Navigation