Skip to main content
Log in

Simulation of crack propagation in porous compacted specimens of aspirin

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A model originally developed to simulate crack propagation in structural steel has been evaluated for porous compacted specimens of aspirin. The fracture mechanism is assumed to consist of hole growth and coalescence. The program allows both visualization of crack growth and the calculation of crack velocity. Simulations to investigate the effect of stress intensity factor indicate that the critical stress intensity factor for sustained growth for aspirin is of the order of 0.15 MPa m1/2 consistent with experimental findings. The program is easy to use enabling many simulations to be performed with minimum effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Polar coordinate with origin at the crack tip

C d :

Propagation velocity of the irrotational wave

E :

Young's modulus of elasticity

H :

Indentation hardness

K :

Stress intensity factor at the crack tip

K IC :

Critical stress intensity factor

n :

The exponent

R :

Radius of the hole/pore

t :

Time

V :

Crack-tip velocity

β:

Fluidity (i.e. the reciprocal of the viscosity)

δ:

The smoothening length

θ:

Polar coordinate with origin at the crack tip

ϱ:

True density

σ:

Stress

σ0 :

Flow or yield stress

ν:

Poisson's ratio

References

  1. A. B. Mashadi and J. M. Newton, J. Pharm. Pharmacol. 39 (1987) 961.

    CAS  Google Scholar 

  2. R. J. Roberts and R. C. Rowe, Int. J. Pharm. 52 (1989) 213.

    Article  CAS  Google Scholar 

  3. P. York, F. Bassam, R. C. Rowe and R. J. Roberts, ibid. 66 (1990) 143.

    Article  CAS  Google Scholar 

  4. R. J. Roberts, R. C. Rowe and P. York, ibid. (1992) in press.

  5. A. B. Mashadi and J. M. Newton, J. Pharm. Pharmacol. 40 (1988) Suppl. 120 p.

  6. K. B. Broberg in Advances in Constitutive Laws for Engineering Materials, edited by F. Jinghong and S. Murakami, Vol. 1, Pergamon, Oxford, 1989 pp. 255–358.

    Google Scholar 

  7. K. B. Broberg, Int. J. Fract. 42 (1990) 277.

    Article  Google Scholar 

  8. R. C. Rowe and R. J. Roberts, Powder Technol. submitted.

  9. K. B. Broberg, personal communication (1990).

  10. H. Gucluyildiz, G. S. Banker and G. E. Peck, J. Pharm. Sci. 66 (1977) 407.

    CAS  Google Scholar 

  11. K. Ridgway, E. Shotten and J. Geasby, J. Pharm. Pharmacol. 21 (1969) Suppl. 19S.

  12. R. J. Roberts, R. C. Rowe and P. York, Powder Technol. 65 (1991) 139.

    CAS  Google Scholar 

  13. K. Ridgway, M. E. Aulton and P. H. Rosser, J. Pharm. Pharmacol. 22 (1970) 70S.

    Google Scholar 

  14. R. C. Rowe and R. J. Roberts, Int. J. Pharm. 78 (1992a) 49.

    Article  CAS  Google Scholar 

  15. Idem, ibid. 86 (1992) 49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowe, R.C., Roberts, R.J. Simulation of crack propagation in porous compacted specimens of aspirin. JOURNAL OF MATERIALS SCIENCE 28, 3385–3390 (1993). https://doi.org/10.1007/BF00354262

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354262

Keywords

Navigation