Skip to main content
Log in

Entropy-Based Markov Chains for Multisensor Fusion

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes an entropy based Markov chain (EMC) fusion technique and demonstrates its applications in multisensor fusion. Self-entropy and conditional entropy, which measure how uncertain a sensor is about its own observation and joint observations respectively, are adopted. We use Markov chain as an observation combination process because of two major reasons: (a) the consensus output is a linear combination of the weighted local observations; and (b) the weight is the transition probability assigned by one sensor to another sensor. Experimental results show that the proposed approach can reduce the measurement uncertainty by aggregating multiple observations. The major benefits of this approach are: (a) single observation distributions and joint observation distributions between any two sensors are represented in polynomial form; (b) the consensus output is the linear combination of the weighted observations; and (c) the approach suppresses noisy and unreliable observations in the combination process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basir, O. A. and Shen, H. C.: Modelling and fusing uncertain multi-sensory data, J. Robotic Systems 13(2) (1996), 95–109.

    Google Scholar 

  2. Berger, J. O.: The robust Bayesian viewpoint, The International Library of Critical Writings in Econometrics 7: Bayesian Inference, Vol. 1, 1995, pp. 354–414.

    Google Scholar 

  3. Berler, A. and Shimony, S. E.: Bayes networks for sonar sensor fusion, in: Proc. of the 13th Conf. on Uncertainties in Artificial Intelligence, 1997, pp. 14–21.

  4. Bloch, I. and Maitre, H.: Fusion of image information under imprecision, in: Aggregation and Fusion of Imperfect Information, 1998, pp. 189–213.

  5. Buxton, H. and Gong, S. G.: Visual surveillance in a dynamic and uncertain world, Artificial Intelligence 78 (1995), 431–459.

    Google Scholar 

  6. Chung, A. C. S., Shen, H. C., and Basir, O. A.: A decentralized approach to sensory data integration, in: Proc. of 1997 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems, 1997, pp. 1409–1414.

  7. Chung, A. C. S. and Shen, H. C.: Integrating dependent sensory data, in: Proc. of 1998 IEEE Internat. Conf. on Robotics and Automation, May 1998, pp. 3546–3552.

  8. Clark, J. J. and Yuille, A. L.: Data Fusion for Sensory Information Processing Systems, Kluwer Academic, Dordrecht, 1990.

    Google Scholar 

  9. DeGroot, M. H.: Reaching a consensus, J. Amer. Statist. Assoc. 69(345) (1974), 118–121.

    Google Scholar 

  10. DeGroot, M. H.: Probability and Statistics, McGraw-Hill, New York, 1986.

    Google Scholar 

  11. Dromigny, A. and Zhu, Y. M.: Improving the dynamic range of real-time X-ray imaging systems via Bayesian fusion, J. Nondestructive Evaluation 16(3) (1997), 147–160.

    Google Scholar 

  12. Durrant-Whyte, H. F.: Sensor models and multisensor integration, Internat. J. Robotics Res. 7(6) (1988), 97–113.

    Google Scholar 

  13. Elfes, A.: Multi-source spatial data fusion using Bayesian reasoning integration, in: Data Fusion in Robotics and Machine Intelligence, Academic Press, New York, 1992, pp. 137–163.

    Google Scholar 

  14. Goodridge, S. G., Kay, M. G., and Luo, R. C.: Multilayered fuzzy behavior fusion for realtime reactive control of systems with multiple sensors, IEEE Trans. Industr. Electronics 43(3) (1996), 387–394.

    Google Scholar 

  15. Haddad, Z. S., Durden, S. L., and Im, E.: Bayesian fusion of trmm passive and active measurements, in: IGARSS'97, 1997 Internat. Geoscience and Remote Sensing Symposium, Remote Sensing-A Scientific Vision for Sustainable Development, Vol. 4, 1997, pp. 1642–1644.

    Google Scholar 

  16. Hall, D.: Mathematical Techniques in Multisensor Data Fusion, Artech Hourse, Boston, 1992.

    Google Scholar 

  17. Hillier, F. S. and Lieberman, G. J.: Introduction to Operations Research, McGraw-Hill, New York, 1990.

    Google Scholar 

  18. Huber, P. J.: Robust Statistics, Wiley, New York, 1981.

    Google Scholar 

  19. Hurn, M. A., Mardia, K. V., Hainsworth, T. J., Kirkbride, J., and Berry, E.: Bayesian fused classification of medical images, IEEE Trans. Medical Imaging 15(6) (1996), 850–858.

    Google Scholar 

  20. Kang, D. H., Luo, R. C., Hashimoto, H., and Harashima, F.: Position estimation for mobile robot using sensor fusion, in: Proc. of the 1994 Internat. Conf. on Multisensor Fusion and Integration for Intelligent Systems (MFI'94), October 1994, pp. 647–652.

  21. Kittler, J., Matas, J., Jonsson, K., and Sanchez, M. U. R.: Combining evidence in personal identity verification systems, Pattern Recognition Lett. 18 (1997), 845–852.

    Google Scholar 

  22. Liu, J. and Chang, K. C.: Feature-based target recognition with a Bayesian network, Optical Engineering 35(3) (1996), 701–707.

    Google Scholar 

  23. Nadabar, S. G. and Jain, A. K.: Fusion of range and intensity images on a connection machine (cm-2), Pattern Recognition 28(1) (1995), 11–26.

    Google Scholar 

  24. Park, S. W. and Lee, C. S. G.: Fusion based sensor fault detection, in: Proc. of 1993 IEEE Internat. Sympos. on Intelligent Control, August 1993, pp. 156–161.

  25. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipes in C: The Art of Scientific Computing, Cambridge Univ. Press, 1992.

  26. Shannon, C. E.: A mathematical theory of communication, Bell Syst. Techn. J. 27 (1948), 379–423.

    Google Scholar 

  27. Solberg, A. H. S., Jain, A. K., and Taxt, T.: Multisource classification of remotely sensed data: Fusion of landsat tm and sar images, IEEE Trans. Geoscience Remote Sensing 32(4) (1994), 768–778.

    Google Scholar 

  28. Stassopoulou, A., Petrou, M., and Kittler, J.: Application of a bayesian network in a gis-based decision making system, Internat. J. Geographical Inform. Sci. 12(1) (1998), 23–45.

    Google Scholar 

  29. Stratton, D. A. and Stengel, R.: Real-time decision aiding: Aircraft guidance for wing shear avoidance, IEEE Trans. Aerospace Electronic Systems 31(1) (1995), 117–124.

    Google Scholar 

  30. Wallack, A. S. and Canny, J. F.: Generalized polyhedral object recognition and localization using crossbeam sensing, The Internat. J. Robotics Res. 16(4) (1997), 473–496.

    Google Scholar 

  31. Wolff, G. J.: Sensory fusion: Integrating visual and auditory information for recognizing speech, in: Proc. of the 1993 IEEE Internat. Conf. on Neural Networks, Vol. 2, 1993, pp. 672–677.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, A.C.S., Shen, H.C. Entropy-Based Markov Chains for Multisensor Fusion. Journal of Intelligent and Robotic Systems 29, 161–189 (2000). https://doi.org/10.1023/A:1008138126506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008138126506

Navigation