Skip to main content
Log in

A comparative study on planktonic ciliates in two shallow mesotrophic lakes (China): species composition, distribution and quantitative importance

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The species richness and seasonal development of planktonic ciliates were studied and compared in two shallow mesotrophic lakes, one covered with dense submerged macrophytes, the other macrophyte poor. Considerable differences in ciliate species composition, dominant taxa, abundance and biomass were observed. Ciliates were much more species rich in the macrophyte-rich lake, while they were more abundant numerically in the macrophyte-poor lake. Altogether, 96 species, included in 53 genera, 14 orders were identified. Among them, 80 species (included in 45 genera, 14 orders) observed from the macrophyte-rich lake, against 49 species (36 genera, 12 orders) were from the macrophyte-poor lake. In the macrophyte-rich lake, the mean abundance and biomass were 13.5 cells ml-1 and 547.10 μg l-1 f.w.; abundance and biomass were higher in spring and winter; naked oligotrichs dominated total ciliate abundance and Peritrichida dominated the biomass. In the macrophyte-poor lake, ciliate mean abundance and biomass were 35.5 cells ml-1 and 953.39 μg l-1 f.w.; abundances peaked in autumn; Scuticociliates dominated the abundance and Tintinnids dominated the biomass. Possible causes for the observed differences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association, 1985. Standard methods for the examination of water and wastewater. Am. Public Health Assoc., Washington DC, 1193 pp.

    Google Scholar 

  • Arndt, H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)-a review. Hydrobiologia 255/256 (Dev. Hydrobiol. 83): 231–246.

    Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27(2): 246–253.

    Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1989a. The role of ciliated protozoa in pelagic freshwater ecosystems. Microl. Ecol. 17: 111–136.

    Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1989b. Analysis of the community structure of planktonic ciliated protozoa relative to trophic state in Florida lakes. Hydrobiologia 174: 177–184.

    Google Scholar 

  • Corliss, J. O., 1979. The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature. Pergamon Press, Oxford, 455 pp.

    Google Scholar 

  • Detcheva, R. B., 1982. Caracteristiques ecologiques des ciliés de la rivière Maritza. Ann. Stat. Biol. Besse-en-Chandesse 16: 200–219.

    Google Scholar 

  • Fenchel, T., 1987. Ecology of Protozoa. Springer-Verlag, Berlin, 197 pp.

    Google Scholar 

  • Finlay, B. J., 1978. Community production and respiration by ciliated protozoa in the benthos of a small eutrophic loch. Freshwat. Biol. 8: 327–341.

    Google Scholar 

  • Foissner, W., H. Berger, H. Blatterer, & F. Kohmann, 1991–95. Taxonomische und okologische Revision der Ciliaten des Saprobiensystems.Band I-IV. Bayerisches Landesamt für Wasserwirstschaft, München, 471, 502, 548, 540 pp.

  • Gates, M. A. & U. T. Lewg, 1984. Contribution of ciliated protozoa to the planktonic biomass in a series of Ontario lakes: quantitative estimates and dynamical relationships. J. Plankton Res. 6(3): 443–456.

    Google Scholar 

  • Green, J., 1994. The temprate-tropical gradient of planktonic Protozoa and Rotifera. Hydrobiologia 272: 13–26.

    Google Scholar 

  • Hunt, G. W. & Shih Ming Chein, 1983. Seasonal distribution, composition and abundance of the planktonic Ciliata and Testacea of Cayuga Lake. Hydrobiologia 98: 257–266.

    Google Scholar 

  • Kahl, A., 1930–35. Urtiere oder Protozoa. I. Wimpertiere oder Ciliata (Infusoria). In: F. Dahl (eds), Die Tierwelt Deutschlands. G. Fisher, Jena, 886 pp.

    Google Scholar 

  • Lee, J. J., S. H. Hutner & E. C. Bovee (eds.), 1985. An Illustrated Guide to the Protozoa, Society of Protozoologists, Allen Press, Laurence, Kansas, 629 pp.

    Google Scholar 

  • Laybourn-Parry, J., J. Olver, A. Rogerson & P. L. Duverge, 1990. The temporal and spatial patterns of protozooplankton abundance in a eutrophic temperate lake. Hydrobiologia 203: 99–110.

    Google Scholar 

  • Madoni, P., 1987. Abundance, productivity and energy flow of a population of Coleps hirtus Nitzsch (Protozoa, Ciliophora) during the first stage of colonization in an experimental ricefield. Arch. Protistenkd. 132: 43–51.

    Google Scholar 

  • Madoni, P. & P. F. Ghetti, 1980. Etude de la dynamique des populations de ciliés d'un torrent experimental pendam deux années.Hydrobiologia 74: 273–282.

    Google Scholar 

  • Mathes, J. & H. Arndt, 1995. Annual cycle of protozooplankton (ciliates, flagellates and sarcodines) in relation to phyto-153 and meta-zooplankton in Lake Neumühler See (Mecklenburg, Germany). Arch. Hydrobiol. 134(3): 337–358.

    Google Scholar 

  • Müller, H., A. Schone, R. M. Pinto-Coelho, A. Schweizer & T. Weisser, 1991. Seasonal succession of ciliates in Lake Constance. Microb. Ecol. 21: 119–138.

    Google Scholar 

  • Nauwerck, A., 1963. Die Beziehungen zwischen Zooplankton und Phytoplankton im See Erken. Symb. Bot. Upsal. 17(5): 1–163.

    Google Scholar 

  • Pace, M. L., 1982. Planktonic ciliates: their distribution, abundance and relationship to microbial resources in a monomictic lake. Can. J. Fish. aquat. Sci. 39: 1106–1116.

    Google Scholar 

  • Psenner, R. & K. Schlott-Idt, 1985. Trophic relationships between bacteria and protozoa in the hypolimnion of a meromictic lake. Hydrobiologia 121: 111–120.

    Google Scholar 

  • Porter, K. G., E. B. Sherr, B. F. Sherr, M. Pace & R. W. Sanders, 1985. Protozoa in planktonic food webs. J. Protozool. 32: 409–415.

    Google Scholar 

  • Sherr, B. F. & E. B. Sherr, 1989. Trophic impacts on phagotrophic protozoa in pelagic foodwebs. In T. Hattori et al. (eds), Recent Advances in Microbial Ecology. Japan Scientific Societies Press, Tokyo, pp 388–393.

    Google Scholar 

  • Schönberger, M., 1994. Planktonic ciliated protozoa of Neausiedler See (Austria/Hungary)-a comparison between the turbid open lake and a reedless brown-water pond. Marine microbial Food Webs 8(1–2): 251–263.

    Google Scholar 

  • Simek, K., M. Macek, J. Pernthaler, V. Straskrabovva & R. Psenner, 1996. Can freshwater planktic ciliates survive on a diet of picoplankton? J. Plankton Res. 18: 597–613.

    Google Scholar 

  • Song, B., M. Cao & P. Xie, 2000. The effects of restoration and disappearance of submerged macrophytes upon the structure and biodiversity of protozoan community. Acta Ecol. Sinica 20(2): 270–276 (in Chinese with English abstract).

    Google Scholar 

  • Sorokin, J. I. & E. B. Paveljeva, 1972. On the quantitative characterisrics of the pelagic ecosystem of Dalnee Lake (Kamchatka). Hydrobiologia 40: 519–552.

    Google Scholar 

  • Stella, E. & F. Margaritora, 1966. Studio faunistico ed ecologico di un lago-stagno del Lazio: il Lago di Monterosi. Arch. Zool. Ital. 51: 159–226.

    Google Scholar 

  • Taylor, W. D. 1984. Phosphorus flux through epilimnetic zooplankton from Lake Ontario: relationship with body size and significance to phytoplankton. Can. J. Fish. aquat. Sci. 41: 1702–1712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biyu, S. A comparative study on planktonic ciliates in two shallow mesotrophic lakes (China): species composition, distribution and quantitative importance. Hydrobiologia 427, 143–153 (2000). https://doi.org/10.1023/A:1003963126254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003963126254

Navigation