Skip to main content
Log in

Variability of gene expression in transgenic tobacco

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Variability in the expression of the introduced nptII gene was evaluated in transgenic tobacco. Expression analysis was performed on progeny plants of selfed primary transformants. Three different gene constructs were used, containing the nptII gene expressed by either 35S, heat shock protein (hsp80) or the hsp80 promoter including the TMV (Tobacco Mosaic Virus) omega translational enhancer element. Expression of the nptII gene in leaves collected from different developmental phases, varied up to twelve times. The variation in expression of NPTII between independent transformants, all transformed with the same gene construct was found to vary up to nine times. Expression of the nptII gene in the selfed progeny originating from one transformant varied up to four times. The 35S promoter showed a 50-100 fold higher expression of the nptII gene compared to the hsp80 promoter. The omega element enhanced the expression up to two times when compared to the same promoter without the omega element. Transformants containing multiple T-DNA inserts had generally a lower nptII expression compared to plants containing single T-DNA inserts. Implications of such variation in commercialized transgenic crops are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battraw, M. J., T.C. Hall, 1990. Histochemical analysis of CaMV from 35S promoter-β-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol 15: 527–538.

    Article  PubMed  CAS  Google Scholar 

  • Benfey, P.N., L. Ren, N-H. Chua, 1990. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9: 1677–1684.

    PubMed  CAS  Google Scholar 

  • Bevan, M., 1984. Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12: 8711–8721.

    PubMed  CAS  Google Scholar 

  • Bhattacharyya, M.K., B.A. Stermer, R.A. Dixon, 1994. Reduced variation in transgene expression from a binary vector with selectable markers at the right and the left T-DNA borders. Plant Journal 6: 957–968.

    Article  CAS  Google Scholar 

  • Bradford, M.M, 1979. A rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.

    Article  Google Scholar 

  • Brandle, J.E., S.G. McHugh, L. James, H. Labbe, B.I. Miki, 1995. Instability of transgene expression in field grown tobacco carrying the csrl-1 gene for sulfonylurea herbicide resistance. Bio Technol 13: 944–998.

    Google Scholar 

  • de Carvalho, F., G. Gheysen, S. Kushnir, M. van Montagu, D. Inzé, C. Castresana, 1992. Suppression of β-1.3-glucanase transgene expression in homozygous plants. EMBO J 11: 2595–2602.

    PubMed  CAS  Google Scholar 

  • Delores, S.C., R.C. Gardner, 1988. Expression and inheritance of kanamycin resistance in a large number of transgenic Petunias generated by Agrobacterium-mediated transformation. Plant Mol Biol 11: 355–364.

    Article  Google Scholar 

  • Elmayan, T., H. Vaucheret, 1996. Expression of silenced copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J 9: 787–797.

    Article  CAS  Google Scholar 

  • EPA Publication Number 0 559 603 A2.

  • Fischoff, D.A., K.S. Bowdish, F.J. Perlak, P.G. Marrone, S.M. McCormick, J.G. Niedermeyer, D.A. Dean, K. Kusano-Kretzmer, E.J. Meyer, D.E. Rochester, S.G. Rogers, R.T. Fraley, 1987. Insect tolerant transgenic tomato plants. Bio Technol 5: 807–813.

    Google Scholar 

  • Gallie, D.R., V. Walbot, 1992. Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucl Acids Res 20: 4631–4638.

    PubMed  CAS  Google Scholar 

  • Haughn, G.W., C. Sommerville, 1986. Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol Gen Genet 204: 430–434.

    Article  CAS  Google Scholar 

  • Hobbs, S.A.L., T.M. Warkentin, C.M.O. DeLong, 1993. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Holtorf, S., K. Apel, H. Bohlmann, 1995. Comparison of different constitutive and inducible promoters for the over expression of transgenes in Arabidopsis thaliana. Plant Mol Biol 29: 637–646.

    Article  PubMed  CAS  Google Scholar 

  • Horsch, R.B., J.E. Fry, N.L. Hoffman, D.S. Eichholtz, S.A. Rogers, R.T. Fraley, 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    CAS  Google Scholar 

  • Jones, J.D.G., D.E. Gilbert, K.L. Grady, R.A. Jorgensen, 1987. T-DNA structure and gene expression in petunia plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207: 478–485.

    Article  CAS  Google Scholar 

  • Linn, F., I. Heidmann, H. Saedler, P. Meyer, 1990. Epigenetic changes in the expression of the maize A1 gene in petunia hybrida: Role of numbers of integrated gene copies and state of methylation. Mol Gen Genet 222: 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Mannerlöf, M., P. Tenning, 1997. Screening of transgenic plants by multiplex PCR. Plant Mol Biol Rep 15: 38–45.

    Google Scholar 

  • Matzke, M.A., A.J.M. Matzke, 1990. Gene interactions and epigenetic variation in transgenic plants. Genet Devel 11: 214–223.

    Article  CAS  Google Scholar 

  • Meyer, P., 1995. Variation of transgene expression in plants. Euphytica 85: 359–366.

    Article  CAS  Google Scholar 

  • Mittelstein, S.O., J. Paszkowski, I. Potrykus, 1991. Reversible inactivation of a transgene in Arabidopsis thaliana. Mol Gen Genet 228: 104–112.

    Google Scholar 

  • Murashige, T., F. Skoog, 1962. A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol Plant 15: 473–497.

    Article  CAS  Google Scholar 

  • Nagel, J. R., J.M. Manners, R.G. Birch, 1992. Evaluation of an ELISA assay for rapid detection and quantification of neomycin phophotransferase II in transgenic plants. Plant Mol Biol Rep 10: 263–272.

    CAS  Google Scholar 

  • Odell, J.T., F. Nagy, N-H. Chua, 1987. Variability in 35S promoter expression between independent transformants. In: Key, L and McINtosh, L (Eds.), Plant Gene Systems and their Biology, Alan R. Liss, New York, 62: 321–329.

    Google Scholar 

  • Peach, C., J. Velten, 1991. Transgene expression variability (position effects) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17: 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R.N., S.G. Rogers, 1979. Plasmid pKC7: A vector containing ten restriction endonucleases sites suitable for cloning DNA segments. Gene 7: 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Saghai-Maroof, M.F., K.M. Soliman, R.A. Jorgensen, R.W. Allard, 1984. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance chromosomal location and population dynamics. Proc Natl Acad Sci USA 81: 8014–8018.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, P.R., J.A. Winter, A.R. Barnason, S.G. Rogers, R.T. Fraley, 1987. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucl Acids Res 15: 1543–1558.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannerlöf, M., Tenning, P. Variability of gene expression in transgenic tobacco. Euphytica 98, 133–139 (1997). https://doi.org/10.1023/A:1003104914242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003104914242

Navigation