Skip to main content
Log in

Copper-algae interactions: Inheritance or adaptation?

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study evaluated the responses of wild, adult plants of Enteromorpha compressa, and their progeny, to various copper concentrations. Experiments were designed to test the hypotheses that: 1) individuals of E. compressa from Caleta Palito, a copper-enriched coastal locality, tolerate higher copper concentrations than those from a place with no history of copper pollution and 2) such copper tolerance is under genetic control and therefore, was an inherited character. Our results indicate that algae which inhabit a copper-enriched environment tolerate higher concentrations of copper than those from waters with low copper concentrations. On the other hand, our results suggest that generalizations regarding heritability of the tolerance to copper do not apply to the Chilean E. compressa, as no differences in growth or rhizoid production were found between the progeny from Caleta Palito and Caleta Zenteno. These findings are an indication that heritability and adaptation may represent alternative strategies used by different populations of the same algal species to tolerate copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Castilla, J.C.: 1995, ‘Copper mine tailing disposals in northern Chile rocky shores: the chlorophyta Enteromorpha compressa’, Env. Mon. Assess., in press.

  • Chan, J., Cheung, M., Li, F.: 1974, ‘Trace metals in Hong Kong waters’, Mar. Pollut. Bull. 5, 171–174.

    Google Scholar 

  • Chung, I., Brinkhuis, B.: 1986, ‘Copper effects in early stages of the kelps, Laminaria saccharina’, Mar. Pollut. Bull 17, 213–218.

    Google Scholar 

  • Cullinane, J.P., Doyle, T.M., Whelan, P.M.: 1987, ‘Uses of seaweeds as biomonitors of zinc levels in Cork harbour, Ireland’, Hidrobiologia 151–152, 285–290.

    Google Scholar 

  • Daniel, G.F., Chamberlain, H.L.: 1981, ‘Copper inmobilization in fouling diatoms’, Bot. Mar. 24, 229–243

    Google Scholar 

  • Evans, L., Hoagland, K.: 1986, Algal Biofouling, Elsevier Science Publishers.

  • Foster, P.L.: 1977, ‘Copper exclusion as a mechanism of heavy metal tolerance in a green alga’, Nature 269, 322–323.

    Google Scholar 

  • Goodman, C., Newall, M., Russel, G.: 1976, ‘Rapid screening for copper tolerance in ship-fouling algae’, Int. Biodeterior. Bull. 12, 81–83.

    Google Scholar 

  • Gupta, A., Arora, A.: 1978, ‘Morphology and physiology of Lyngbya nigra with reference to copper toxicity’, Physiol. Plant. 44, 215–220.

    Google Scholar 

  • Hall, A., Fielding, A., Butler, M.: 1979, ‘Mechanisms of copper tolerance in the marine fouling alga Ectocarpus siliculosus-evidence for an exclusion mechanism’, Mar. Biol. 54, 195–199.

    Google Scholar 

  • Ho, Y.: 1987, ‘Metals in 19 intertidal macroalgae in Hong Kong waters’, Mar. Pollut. Bull. 18, 564–566.

    Google Scholar 

  • Ho, Y.: 1990, ‘Ulva lactuca as bioindicator of metal contamination in intertidal waters in Hong Kong’, Hydrobiologial 203, 73–81.

    Google Scholar 

  • Lobban, C., Harrison, P., Duncan, M.: 1985, The Physiological Ecology of Seaweeds, Cambridge University Press.

  • Maeda, S., Sakaguchi, T.: 1990, ‘Accumulation and detoxification of toxic metal elements by algae’, in: Akatsuka, I. (Ed.), Introduction to Applied Phycology. SPB Academic Publishing., pp. 109–136.

  • McLachlan, J.: 1982, ‘Inorganic nutrition of marine macro-algae in culture’, in: Srivastava, L.M. (Ed.), Synthetic and Degradative Processes in Marine Macrophytes. Walter de Gruyter, Berlin, pp. 71–98.

    Google Scholar 

  • Phillips, D.: 1977, ‘The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments—a review’, Environ. Pollut. 13, 281–317.

    Google Scholar 

  • Provasoli, L.: 1963, ‘Growing marine seaweeds’, in: DeVirville, D., Feldmann, J. (Eds.), Proc. 4th Int. Seaweed Symp. Pergamon Press, Oxford, pp. 9–17.

    Google Scholar 

  • Rai, L., Gaur, J., Kumar, H.: 1981, ‘Phycology and heavy-metal pollution’, Biol. Rev. 56, 99–151.

    Google Scholar 

  • Reed, R., Moffat, L.: 1983, ‘Copper toxicity and copper tolerance in Enteromorpha compressa (L.) Grev’, J. Exp. Mar. Bio. Ecol. 69, 85–103.

    Google Scholar 

  • Russell, G., Morris, O.: 1970, ‘Copper tolerance in the marine fouling alga Ectocarpus siliculosus’, Nature 228, 288–289.

    Google Scholar 

  • Sandman, G.: 1985, ‘Photosynthetic and respiratory electron transport in Cu deficient Dunaliella’, Physiol. Plant. 65, 481–486.

    Google Scholar 

  • Seeliger, U., Edwards, P.: 1977, ‘Correlation coefficients and concentration factors of copper and lead in seawater and benthic algae’, Mar. Pollut. Bull. 8, 16–19.

    Google Scholar 

  • Seeliger, U., Braga, R.: 1982, ‘Estuarine metal monitoring in southern Brazil’, Mar. Pollut. Bull. 13, 253–254.

    Google Scholar 

  • Seeliger, U., Cordazzo, C.: 1982, ‘Field and experimental evaluation of Enteromorpha sp. As a quali-quantitative monitoring organism for copper and mercury in estuaries’, Environ. Pollut. Series A 29, 197–206.

    Google Scholar 

  • Shioi, Y., Tamai, H., Sasa, T.: 1978, ‘Inhibition of photosystem II in the green algae Ankistrodesmus falcatus by copper’, Physiol. Plant. 44, 434–438.

    Google Scholar 

  • Shubert, E. (Ed.): 1984; Algae as Ecological Indicators, Academic Press, Inc.

  • Silverberg, B.A., Stokes, P.M., Ferstemberg, L.B.: 1976, ‘Intranuclear complexes in a copper tolerant green alga’, J. Cell Biol. 69, 210–214.

    Google Scholar 

  • Stenner, R., Nickless, G.: 1975, ‘Heavy metals in organisms of the Atlantic coast of South-West spain and Portugal’, Mar. Pollut. Bull. 6 (6), 89–92.

    Google Scholar 

  • Takamura, N., Kasari, F., Watanabe, M.: 1990, ‘Unique response of Cyanophyceae to copper’, J. Appl. Phycol. 2, 293–296

    Google Scholar 

  • Talbot, V., Chegwidden, A.: 1982, ‘Cadmiun and other heavy metal concentrations in selected biota from Cockburn Sound, Western Australia’, Aust. J. Mar. Freshwater. Res. 33, 779–788.

    Google Scholar 

  • Vermeer, K., Castilla, J.C.: 1991, ‘High cadmium resides observed during a pilot study in shorebirds and their prey downstream from the El Salvador Copper Mine, Chile’, Bull. Environ. Contam. Toxicol. 46, 242–248.

    Google Scholar 

  • Wallner, M., Seeliger, U., Teixeira, V., Joventino, F., Silva, S.: 1986, ‘Variacoes regionais na concentracao de metais pesados na macroalga Enteromorpha sp. dos estuarios do rio Ceara (Ceara), lagoa de mundau (Alagoas) e lagoa da Tijuca (Rio de Janeiro)’, Arq. Cien. Mar. 25, 41–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correa, J.A., González, P., Sánchez, P. et al. Copper-algae interactions: Inheritance or adaptation?. Environ Monit Assess 40, 41–54 (1996). https://doi.org/10.1007/BF00395166

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00395166

Keywords

Navigation