Skip to main content
Log in

Crack propagation in both porous compacts and pigmented films prepared from cellulose derivatives — a comparison of computer simulation with experimental observation

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A model originally developed to simulate crack propagation in viscoplastic materials, where the micromechanism consists of void growth, has been evaluated for both pigmented films and porous compacts of cellulose derivatives. The program allows both visualization of crack growth and the calculation of crack velocity. The program is easy to use, enabling many simulations to be performed with minimum effort. The agreement with experimental observation both qualitatively and quantitatively is very good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassam, F., York, P., Rowe, R. C. and Roberts, R. J. (1990)Int. J. Pharm. 64, 55–60.

    Google Scholar 

  • Broberg, K. B. (1989) InAdvances in Constitutive Laws for Engineering Materials (F. Jinghong and S. Murakami, eds.). Oxford: Pergamon, Vol. 1, pp. 255–358.

    Google Scholar 

  • Broberg, K. B. (1990)Int. J. Fract. 42, 277–285.

    Google Scholar 

  • Haas, H. C., Farrey, L. and Valle, C. (1952)J. Colloid Sci. 1, 584–599.

    Google Scholar 

  • Mashadi, A. B. and Newton, J. M. (1988)J. Pharm. Pharmacol. 40, Suppl. 120P.

  • Ritter, A. and Sucker, H. B. (1980)Pharm. Tech. 3(3), 56–65, 128.

    Google Scholar 

  • Roberts, R. J. and Rowe, R. C. (1987)Chem. Eng. Sci. 42, 903–911.

    Google Scholar 

  • Roberts, R. J., Rowe, R. C. and York, P. (1993)Int. J. Pharm. 91, 173–182.

    Google Scholar 

  • Rowe, R. C. (1982)Pharm. Acta. Helv. 57, 221–225.

    PubMed  Google Scholar 

  • Rowe, R. C. (1984) InMaterials used in Pharmaceutical Formulation: Critical Reports in Applied Chemistry (A. T. Florence, ed.). London: Blackwell Scientific Publications, Vol. 6, pp. 1–36.

    Google Scholar 

  • Rowe, R. C. (1992) InAdvances in Pharmaceutical Sciences (D. Ganderton and T. M. Jones, eds.). London: Academic Press, Vol. 6, pp. 65–100.

    Google Scholar 

  • Rowe, R. C. (1986)Int. J. Pharm. 29, 37–41.

    Google Scholar 

  • Rowe, R. C. and Forse, S. F. (1980)J. Pharm. Pharmacol. 32, 583–584.

    PubMed  Google Scholar 

  • Rowe, R. C. and Roberts, R. J. (1992a)Int. J. Pharm. 78, 49–57.

    Google Scholar 

  • Rowe, R. C. and Roberts, R. J. (1992b)Int. J. Pharm. 86, 49–58.

    Google Scholar 

  • Rowe, R. C. and Roberts, R. J. (1993)J. Mater. Sci. 28, 3385–3390.

    Google Scholar 

  • Rowe, R. C. and Roberts, R. J. (1994)Eur. J. Pharm. Biopharm. 40, 9–13.

    Google Scholar 

  • Rowe, R. C. and Roberts, R. J. (1995)J. Mater. Sci. Lett. 14, 420–421.

    Google Scholar 

  • Rowe, R. C., Rowe, M. D. and Roberts, R. J. (1994)Pharm. Technol. 18(10), 1–6.

    Google Scholar 

  • Sixsmith, D. (1977)J. Pharm. Pharmacol. 29, 33–36.

    PubMed  Google Scholar 

  • York, P., Bassam, F., Rowe, R.C. and Roberts, R. J. (1990)Int. J. Pharm. 66, 143–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowe, R.C., Roberts, R.J. Crack propagation in both porous compacts and pigmented films prepared from cellulose derivatives — a comparison of computer simulation with experimental observation. Cellulose 3, 11–20 (1996). https://doi.org/10.1007/BF02228788

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02228788

Keywords

Navigation