Skip to main content
Log in

Sequential correlation of anomeric ribose protons and intervening phosphorus in RNA oligonucleotides by a 1H,13C,31P triple resonance experiment: HCP-CCH-TOCSY

  • Short Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

A three-dimensional 1H,13C,31P triple resonance experiment, HCP-CCH-TOCSY, is presented which provides unambiguous through-bond correlation of all 1H ribose protons on the 5′ and 3′ sides of the intervening phosphorus along the backbone bonding network in 13C-labeled RNA oligonucleotides. The correlation of the complete ribose spin system to the intervening phosphorus is obtained by adding a C,C-TOCSY coherence transfer step to the triple resonance HCP experiment. The C,C-TOCSY transfer step, which utilizes the large and relatively uniform 1J(C,C) coupling constant (∼40 Hz for ribose carbons), efficiently correlates the phosphorus-coupled carbons observed in the HCP correlation experiment (i.e., C4′ and C5′ in the 5′ direction and C4′ and C3′ in the 3′ direction) to all other carbons in the ribose spin system. Of the additional correlations observed in the HCP-CCH-TOCSY, that to the relatively well-resolved anomeric H1′, C1′ resonance pairs provides the greatest gain in terms of facilitating assignment. The gain in spectral resolution afforded by chemical shift labeling with the anomeric resonances should provide a more robust pathway for sequential assignment over the intervening phosphorus in larger RNA oligonucleotides. The HCP-CCH-TOCSY experiment is demonstrated on a uniformly 13C,15N-labeled 19-nucleotide RNA stem-loop, derived from the antisense RNA I molecule found in the ColE1 plasmid replication control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • ArtemovD.Y. (1991) J. Magn. Reson., 91, 405–407.

    Google Scholar 

  • BateyR.T., InadaM., KujawinskiE., PuglisiJ.D. and WilliamsonJ.R. (1992) Nucleic Acids Res., 20, 4515–4523.

    Google Scholar 

  • BaxA., CloreG.M. and GronenbornA.M. (1990) J. Magn. Reson., 88, 425–431.

    Google Scholar 

  • BeardenD.W. and BrownL.R. (1989) Chem. Phys. Lett., 163, 432–436.

    Article  ADS  Google Scholar 

  • CavanaghJ., PalmerIIIA.G., WrightP.E. and RanceM. (1991) J. Magn. Reson., 91, 429–436.

    Google Scholar 

  • ChastainM. and TinocoJr.I.J. (1991) Prog. Nucleic Acid Res. Mol. Biol., 41, 131–177.

    Google Scholar 

  • FarmerIIB.T., MüllerL., NikonowiczE.P. and PardiA. (1993) J. Am. Chem. Soc., 115, 11040–11041.

    Google Scholar 

  • FarmerIIB.T., MüllerL., NikonowiczE.P. and PardiA. (1994) J. Biomol. NMR, 4, 129–133.

    Google Scholar 

  • FeigonJ., LeupinW., DennyW.A. and KearnsD.R. (1983) Biochemistry, 22, 5943–5951.

    Google Scholar 

  • FesikS.W., EatonH.L., OlejniczakE.T., ZuiderwegE.R.P., McIntoshL.P. and DahlquistF.W. (1990) J. Am. Chem. Soc., 112, 886–888.

    Google Scholar 

  • HareD.R., WemmerD.E., ChouS., DrobnyG. and ReidB.R. (1983) J. Mol. Biol., 171, 319–336.

    Article  Google Scholar 

  • HeusH.A., WijmengaS.S., Van deVenF.J.M. and HilbersC.W. (1994) J. Am. Chem. Soc., 116, 4983–4984.

    Article  Google Scholar 

  • KayL.E., KeiferP. and SaarinenT. (1992) J. Am. Chem. Soc., 114, 10663–10664.

    Article  Google Scholar 

  • KelloggG.W. (1992) J. Magn. Reson., 98, 176–182.

    Google Scholar 

  • KelloggG.W., SzewczakA.A. and MooreP.B. (1992) J. Am. Chem. Soc., 114, 2727–2728.

    Article  Google Scholar 

  • KelloggG.W. and SchweitzerB.I. (1993) J. Biomol. NMR, 3, 577–595.

    Article  Google Scholar 

  • MarinoJ.P., SchwalbeH., AnklinC., BermelW., CrothersD.M. and GriesingerC. (1994) J. Am. Chem. Soc., 116, 6472–6473.

    Google Scholar 

  • MarionD., IkuraR., TschudinR. and BaxA. (1989) J. Magn. Reson., 85, 393.

    Google Scholar 

  • MilliganJ.F., GroebeD.R., WitherellG.W. and UhlenbeckO.C. (1987) Nucleic Acids Res., 15, 8783–8798.

    Google Scholar 

  • MorrisG.A. and FreemanR.J. (1979) J. Am. Chem. Soc., 101, 760–762.

    Article  Google Scholar 

  • MorrisG.A. and GibbsA. (1991) J. Magn. Reson., 91, 444–449.

    Google Scholar 

  • PardiA. and NikonowiczE.P. (1992) J. Am. Chem. Soc. 114, 9202–9203.

    Article  Google Scholar 

  • PardiA., WalkerR., RappoportH., WiderG. and WüthrichK. (1983) J. Am. Chem. Soc., 105, 1652–1653.

    Article  Google Scholar 

  • PalmerIIIA.G., CavanaghJ., WrightP.E. and RanceM. (1991) J. Magn. Reson., 93, 151–170.

    Google Scholar 

  • Sattler, M., Schmidt, P., Schleucher, J., Schedletzky, O., Glaser, S.J. and Griesinger, C. (1995), J. Magn. Reson., in press.

  • ScheekR.M., BoelensR., RussoN., VanBoomJ.H. and KapteinR. (1984) Biochemistry, 23, 1371–1376.

    Article  Google Scholar 

  • SchleucherJ., SattlerM. and GriesingerC. (1993) Angew. Chem., Int. Ed. Engl., 32, 1489–1491.

    Article  Google Scholar 

  • SchwalbeH., MarinoJ.P., KingG.C., WechselbergerR., BermelW. and GriesingerC. (1994) J. Biomol. NMR, 4, 631–644.

    Article  Google Scholar 

  • SchwalbeH., SamstagW., EngelsJ.W., BermelW. and GriesingerC. (1993) J. Biomol. NMR, 3, 479–486.

    Article  Google Scholar 

  • ShakaA.J., BarkerP. and FreemanR. (1985) J. Magn. Reson. 64, 547–552.

    Google Scholar 

  • ShakaA.J., LeeC.J. and PinesA. (1988) J. Magn. Reson., 77, 274–293.

    Google Scholar 

  • SklenářV., PetersonR.D., RejanteM. and FeigonJ. (1993a) J. Biomol. NMR, 3, 721–727.

    Google Scholar 

  • SklenářV., PetersonR.D., RejanteM.R., WangE. and FeigonJ. (1993b) J. Am. Chem. Soc. 115, 12181–12182.

    Google Scholar 

  • Van deVenF.J.M. and HilbersC.W. (1988) Eur. J. Biochem., 178, 1–38.

    Article  Google Scholar 

  • VaraniG. and TinocoJr.I.J. (1991) Q. Rev. Biophys., 24, 479–532.

    Google Scholar 

  • WyattJ.R. and TinocoJr.I.J. (1993) The RNA World, Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marino, J.P., Schwalbe, H., Anklin, C. et al. Sequential correlation of anomeric ribose protons and intervening phosphorus in RNA oligonucleotides by a 1H,13C,31P triple resonance experiment: HCP-CCH-TOCSY. J Biomol NMR 5, 87–92 (1995). https://doi.org/10.1007/BF00227473

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227473

Keywords

Navigation