Skip to main content
Log in

1H-15N NMR dynamic study of an isolated α-helical peptide (1–36)- bacteriorhodopsin reveals the equilibrium helix-coil transitions

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The backbone dynamics of the bacteriorhodopsin fragment (1–36)BR solubilized in a 1:1 chloroform/methanol mixture were investigated by heteronuclear 1H-15N NMR spectroscopy. The heteronuclear 15N longitudinal and transverse relaxation rates and 15N{1H} steady-state NOEs were measured at three magnetic fields (11.7, 14.1, and 17.6 T). Careful statistical analysis resulted in the selection of the extended model-free form of the spectral density function [Clore et al. (1990) J. Am. Chem. Soc., 112, 4989–4991] for all the backbone amides of (1–36)BR. The peptide exhibits motions on the micro-, nano-, and picosecond time scales. The dynamics of the α-helical part of the peptide (residues 9–31) are characterised by nanosecond and picosecond motions with mean order parameters S 2 s = 0.60 and S 2 f = 0.84, respectively. The nanosecond motions were attributed to the peptide's helix-coil transitions in equilibrium. Residues 3–7 and 30–35 also exhibit motions on the pico- and nanosecond time scales, but with lower order parameters. Residue 10 at the beginning of the α-helix and residues 30–35 at the C-terminus are involved in conformational exchange processes on the microsecond time scale. The implications of the obtained results for the studies of helix-coil transitions and the dynamics of membrane proteins are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A. (1961) The Principles of Nuclear Magnetism, Oxford University Press, London.

    Google Scholar 

  • Baldwin, R.L. (1989) Trends Biochem. Sci., 14, 291–294.

    Google Scholar 

  • Beloborodov, I.S., Orekhov, V. Yu. and Arseniev, A.S. (1998) J. Magn. Reson.., 132, 328–329.

    Google Scholar 

  • Bracken, C., Carr, P.A., Cavanagh, J. and Palmer, A.G. (1999) J.Mol. Biol., 285, 2133–2146.

    Google Scholar 

  • Chou, P.Y. and Scheraga, H.A. (1971) Biopolymers, 10, 657–680.

    Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990) J. Am. Chem. Soc., 112, 4989–4991.

    Google Scholar 

  • Cordier, F., Caffrey, M., Brutscher, B., Cusanovich, M.A., Marion,D. and Blackledge, M. (1998) J. Mol. Biol., 281, 341–361.

    Google Scholar 

  • Daggett, V. and Levitt, M. (1992) J. Mol. Biol., 223, 1121–1138.

    Google Scholar 

  • Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984–6003.

    Google Scholar 

  • Fushman, D. and Cowburn, D. (1998) J. Am. Chem. Soc., 120,7109–7110.

    Google Scholar 

  • Garcia de la Torre, J. and Bloomfield, V.A. (1981) Quart. Rev.Biophys., 14, 81–139.

    Google Scholar 

  • Gruenewald, B., Nicola, C.U., Lustig, A., Schwarz, G. and Klump, H. (1979) Biophys. Chem., 9, 137–147.

    Google Scholar 

  • Hirota, N., Mizuno, K. and Goto, Y. (1997) Protein Sci., 6, 416–421.

    Google Scholar 

  • Kahn, T.W. and Engelman, D.M. (1992) Biochemistry, 31, 6144–6151.

    Google Scholar 

  • Karplus, M. and Weaver, D.L. (1994) Protein Sci., 3, 650–668.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28,8972–8979.

    Google Scholar 

  • Korzhnev, D.M., Orekhov, V.Yu. and Arseniev, A.S. (1997) J. Magn.Reson., 127, 184–191.

    Google Scholar 

  • Korzhnev, D.M., Orekhov, V.Yu., Arseniev, A.S., Gratias, R. and Kessler, H. (1999) J. Phys. Chem. B, 103, 7036-7043.

    Google Scholar 

  • Korzhnev, D.M., Orekhov, V.Yu. and Arseniev, A.S. (1999b) J.Biomol. NMR, 14, 357–368.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Luo, P. and Baldwin, R.L. (1997) Biochemistry, 36, 8413–8421.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer, A.G. (1995) J. Mol. Biol.,246, 144–163.

    Google Scholar 

  • Marti, T. (1998) J. Biol. Chem., 273, 9312–9322.

    Google Scholar 

  • Miick, S.M., Casteel, K.M. and Millhauser, G.L. (1993) Biochemistry,32, 8014–8021.

    Google Scholar 

  • Orekhov, V.Yu., Pervushin, K.V., Korzhnev, D.M. and Arseniev, A.S. (1995) J. Biomol. NMR,6, 113–122.

    Google Scholar 

  • Orekhov, V.Yu., Nolde, D.E., Golovanov, A.P., Korzhnev, D.M. and Arseniev, A.S. (1996) Appl. Magn. Reson., 9, 581–588.

    Google Scholar 

  • Palmer, A.G., Williams, J. and McDermott, A. (1996) J. Phys.Chem., 100, 13293–13310.

    Google Scholar 

  • Pervushin, K.V. and Arseniev, A.S. (1992) FEBS Lett., 308, 190–196.

    Google Scholar 

  • Pervushin, K.V., Orekhov, V.Yu., Popov, A.I., Musina, L.Yu. and Arseniev, A.S. (1994) Eur. J. Biochem., 219, 571–583.

    Google Scholar 

  • Pervushin, K.V. and Arseniev, A.S. (1995a) Bioorg. Khim.,21, 83-111.

    Google Scholar 

  • Pervushin, K.V., Orekhov, V.Yu., Korzhnev, D.M. and Arseniev, A.S. (1995b) J. Biomol. NMR, 5, 383–396.

    Google Scholar 

  • Phillips, C.M., Mizutani, Y. and Hochstrasser, R.M. (1995) Proc.Natl. Acad. Sci. USA, 92, 7292–7296.

    Google Scholar 

  • Popot, J.L., Gerchman, S.E. and Engelman, D.M. (1987) J. Mol.Biol., 198, 655–676.

    Google Scholar 

  • Reeves, L.W. (1975) In Dynamic Nuclear Magnetic ResonanceSpectroscopy(Eds. Jackman, L.M. and Cotton, F.A.), Academic Press, New York, NY, pp. 83–130.

    Google Scholar 

  • Scholtz, J.M. and Baldwin, R.L. (1992) Annu. Rev. Biophys. Biomol.Struct., 21, 95–118.

    Google Scholar 

  • Schurr, J.M., Babcock, H.P. and Fujimoto, B.S. (1994) J. Magn.Reson., A105, 211–224.

    Google Scholar 

  • Thompson, P.A., Eaton, W.A. and Hofrichter, J. (1997) Biochemistry,36, 2200–9210.

    Google Scholar 

  • Tjandra, N., Wingfield, P., Stahl, S. and Bax, A. (1996) J. Biomol.NMR, 8, 273–284.

    Google Scholar 

  • Van Geet, A.L. (1970) Anal. Chem., 42, 679–680.

    Google Scholar 

  • Williams, S., Causgrove, T.P., Gilmanshin, R., Fang, K.S., Callender,R.H., Woodruff, W.H. and Dyer, R.B. (1996) Biochemistry, 35, 691–697.

    Google Scholar 

  • Woessner, D.E. (1962) J. Chem. Phys., 37, 647–654.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orekhov, V.Y., Korzhnev, D.M., Diercks, T. et al. 1H-15N NMR dynamic study of an isolated α-helical peptide (1–36)- bacteriorhodopsin reveals the equilibrium helix-coil transitions. J Biomol NMR 14, 345–356 (1999). https://doi.org/10.1023/A:1008356809071

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008356809071

Navigation