Skip to main content
Log in

Aspects of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Lovastatin biosynthesis in Aspergillus terreus involves two unusual type I multifunctional polyketide syntheses (PKSs). Lovastatin nonaketide synthase (LNKS), the product of the lovB gene, is an iterative PKS that interacts with LovC, a putative enoyl reductase, to catalyze the 35 separate reactions in the biosynthesis of dihydromonacolin L, a lovastatin precursor. LNKS also displays Diels-Alderase activity in vitro. Lovastatin diketide synthase (LDKS) made by lovF, in contrast, acts non-iteratively like the bacterial modular PKSs to make (2R)-2–methylbutyric acid. Then, like LNKS, LDKS interacts closely with another protein, the LovD transesterase enzyme that catalyzes attachment of the 2–methylbutyric acid to monacolin J in the final step of the lovastatin pathway. Key features of the genes for these four enzymes and others, plus the regulatory and self-resistance factors involved in lovastatin production, are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • August PR, Tang L, Yoon YJ, Ning S, Muller R., Yu TW, Taylor M, Hoffman D, Kim CG, Zhang X, Hutchinson CR & Floss HG (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem. Biol. 5: 69–79

    Google Scholar 

  • Blackwell BA, Miller JD & Savard ME (1994) Production of carbon 14–labeled fumonisin in liquid culture. J. AOAC Int. 77: 506–511

    Google Scholar 

  • Bochar DA, Stauffacher CV & Rodwell VW (1999) Sequence comparisons reveal two classes of 3–hydroxy-3–methylglutaryl coenzyme A reductase. Molec. Genet. Metab. 66: 122–127

    Google Scholar 

  • Branham BE & Plattner RD (1993) Alanine is a precursor in the biosynthesis of funonisin B1 by Fusarium moniliforme. Mycopathologia 124: 99–104

    Google Scholar 

  • Caldas ED, Sadikova K, Ward BI, Jones AD, Winter CK & Gilchrist PDG (1998) Biosynthetic studies of fumonisin B1 and AAL. J. Agric. Food Chem. 46: 4734–4743

    Google Scholar 

  • Cane DE, Walsh CT & Khosla C (1998) Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282: 63–68

    Google Scholar 

  • Chan LK, Moore RN, Nakashima T & Vederas JS (1983) Biosynthesis of mevinolin, spectral assignment by double quantum coherence NMR after high carbon-13 incorporation. J. Am. Chem. Soc. 105: 3334–3336

    Google Scholar 

  • Donadio S, Staver MJ, McAlpine JB, Swanson SJ & Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252: 675–679

    Google Scholar 

  • Endo A & Hasumi K (1997) Mevinic acids. In: Anke T (Ed) Fungal Biotechnology (pp 162–172). Chapman & Hall, Weinheim

    Google Scholar 

  • Hendrickson L, Davis CR, Roach C, Nguyen DK, Aldrich T, McAda PC & Reeves CD (1999) Lovastatin biosynthesis in Aspergillus terreus: characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chem. Biol. 6: 429–439

    Google Scholar 

  • Ichihara A & Oikawa H (1998) Diels-Alder type natural products. Structures and biosynthesis. Curr. Org. Chem. 2: 365–394

    Google Scholar 

  • Katayama K, Kobayashi T, Oikawa H, Honma M & Ichihara A (1998) Enzymatic activity and partial purification of solanapyrone synthase: first enzyme catalyzing Diels-Alder reaction. Biochim. Biophys. Acta. 1384: 387–395

    Google Scholar 

  • Katz L (1997) Manipulation of modular polyketide synthases. Chem. Rev. 97: 2557–2575

    Google Scholar 

  • Keller NP & Hohn TM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet. Biol. 21: 17–29

    Google Scholar 

  • Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC & Hutchinson CR (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284: 1368–1372

    Google Scholar 

  • Kono Y & Daly JM (1979) Characterization of the host-specific pathotoxin produced by Helminthosporium maydis, race T, affecting corn with Texas male sterile cytoplasm. Bioorg. Chem. 8: 391–397

    Google Scholar 

  • Konz D & Marahiel MA (1999) How do peptide synthetases generate structural diversity? Chem. Biol. 6: R39–R48

    Google Scholar 

  • Liu Y, Li Z & Vederas JC (1998) Biosynthetic incorporation of advanced precursors into dehydrocurvularin, a polyketide phytotoxin from Alternaria cinerariae. Tetrahedron 54: 15937–15958

    Google Scholar 

  • Moore RN, Bigam G, Chan JK, Hogg, AM, Nakasima, TT & Vederas JC (1985) Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus. Determination of the origin of carbon, hydrogen and oxygen atoms by 13C NMR and mass spectrometry. J. Am. Chem. Soc. 107: 3694–3701

    Google Scholar 

  • Motamedi H, Cai SJ, Shafiee A & Elliston KO (1997) Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK506. Eur. J. Biochem. 244: 74–80

    Google Scholar 

  • Nakamura T, Komagata D, Murakawa S, Sakai K & Endo A (1990) Isolation and biosynthesis of 3α-hydroxy-3,5–dihydromonacolin J. J. Antibiotics 43: 1597–1600

    Google Scholar 

  • Offenzeller M, Santer G, Totschnig K, Su Z, Moser H, Traber R & Schneider-Scherzer E (1996) Biosynthesis of the unusual amino acid (4R)-4–[(E)-2–buteny]-4–methyl-L-threonine of cyclosporin A: Enzymatic analysis of the reaction sequence including identification of the methylation precursor in a polyketide pathway. Biochemistry 35: 8401–8412

    Google Scholar 

  • O'Hagan D (1991) The Polyketide Metabolites. Ellis Horwood, New York

    Google Scholar 

  • Pitkin JW, Panaccione DG & Walton JD (1996) A putative cyclic peptide efflux pump encoded by the TOXA gene of the plantpathogenic fungus Cochliobolus carbonum. Microbiology 142: 1557–1565

    Google Scholar 

  • Plattner RD & Shackelford DD (1992) Biosynthesis of labeled fumonisin in liquid cultures of Fusarium moniliforme. Mycopathologia 117: 17–22

    Google Scholar 

  • Procter RH, Desjardins AE, Plattner RD & Hohn TM (1999) A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet. Biol. 27: 100–112

    Google Scholar 

  • Rawlings BJ (1999) Biosynthesis of polyketides (other than actinomycete macrolides). Nat. Prod. Rep. 16: 425–484

    Google Scholar 

  • Schwecke T, Aparico JF, Molnar I, Konig A, Khaw LE, Haydock SF, Oliynyk M, Caffrey P, Cortes J, Lester JB, Bohm GA, Staunton J & Leadlay PF (1995) The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc. Natl. Acad. Sci. USA 92: 7839–7843

    Google Scholar 

  • Smith S (1994) The animal fatty acid synthase: One gene, one polypeptide, seven enzymes. FASEB. J. 8: 1248–1259

    Google Scholar 

  • Staunton J & Wilkinson B (1997) Biosynthesis of erythromycin and rapamycin. Chem. Rev. 97: 2611–2629

    Google Scholar 

  • Todd RB & Andrianopoulos A (1997) Evolution of a fungal regulatory gene family: The Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet. Biol. 21: 388–405

    Google Scholar 

  • Treiber LR, Reamer RA, Rooney CS & Ramjit HG (1989) Origin of monacolin L from Aspergillus terreus cultures. J. Antibiotics 42: 30–36

    Google Scholar 

  • Wagschal K, Yoshizawa Y, Witter DJ, Liu Y & Vederas JC (1996) Biosynthesis of ML-236C and the hypocholesterolemic agents compactin by Penicillium aurantiogriseus and lovastatin by Aspergillus terreus: determination of the origin of carbon, hydrogen and oxygen atoms by 13C NMR spectroscopy and observation of unusual labelling of acetate-derived oxygens by 18O2. J. Chem. Soc. Perkin Trans. I: 2357–2363

    Google Scholar 

  • Wiesner P, Beck J, Beck KF, Ripka S, Muller G, Lucke S & Schweizer E (1998) Isolation and sequence analysis of the fatty acid synthetase FAS2 gene from Penicillium patulum. Eur. J. Biochem. 177: 69–79

    Google Scholar 

  • Witter DJ & Vederas JS (1996) Putative Diels-Alder-catalyzed cyclization during the biosynthesis of lovastatin. J. Org. Chem. 61: 2613–2623

    Google Scholar 

  • Yamamoto Y, Hori A & Hutchinson CR (1985) Biosynthesis of macrolide antibiotics. 6. Late steps in brefeldin A biosynthesis. J. Am. Chem. Soc. 107: 2471–2474

    Google Scholar 

  • Yang G, Rose MS, Turgeon BG & Yoder OC (1996) A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell 8: 2139–2150

    Google Scholar 

  • Yoshizawa Y, Witter DJ, Liu Y & Vederas JC (1994) Revision of the biosynthetic origin of oxygens in mevinolin (lovastatin), a hypocholesterolemic drug from Aspergillus terreus MF 4845. J. Am. Chem. Soc. 116: 2693–2694

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Richard Hutchinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchinson, C.R., Kennedy, J., Park, C. et al. Aspects of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases. Antonie Van Leeuwenhoek 78, 287–295 (2000). https://doi.org/10.1023/A:1010294330190

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010294330190

Navigation