Skip to main content
Log in

Epidermal growth factor receptor: its role in Drosophila eye differentiation and cell survival

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The Drosophila epidermal growth factor receptor (EGFR), functioning through the Ras/Raf/MAPK pathway, promotes cell proliferation and differentiation. Recent work has demonstrated that EGFR functions via the same Ras/Raf/MAPK pathway to promote cell survival. This review summarizes the role of EGFR in differentiation and survival during Drosophila eye development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vojtek AB, Der CJ. Increasing complexity of the ras signaling pathway. J Biol Chem 1998; 273: 19925-19928.

    Google Scholar 

  2. Rommel C, Hafen E. Ras—a versatile cellular switch. Curr Opin Genet Dev 1998; 8: 412-418.

    Google Scholar 

  3. Schweitzer R, Shilo BZ. A thousand and one roles for the Drosophila EGF receptor. Trends Genet 1997; 13: 191-196.

    Google Scholar 

  4. Freeman M. Cell determination strategies in the Drosophila eye. Development 1997; 124: 261-270.

    Google Scholar 

  5. Kurada P, White K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 1998; 95: 319-329.

    Google Scholar 

  6. Bergmann A, Agapite J, McCall K, Steller H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 1998; 95: 331-341.

    Google Scholar 

  7. Dominguez M, Wasserman JD, Freeman M. Multiple functions of the EGF receptor in Drosophila eye development. Curr Biol 1998; 8: 1039-1048.

    Google Scholar 

  8. Dickson B, Hafen E. Genetic dissection of eye development in Drosophila. In: Bate M, Martinez Arias A, eds. The Development of Drosophila Melanogaster, Vol. II. New York: Cold Spring Harbor Laboratory Press, 1993: 1327-1362.

    Google Scholar 

  9. Karim FD, Rubin GM. Ectopic expression of activated Ras1 induces hyperplastic growth and increased cell death in Drosophila imaginal tissues. Development 1998; 125: 1-9.

    Google Scholar 

  10. Wolff T, Ready DF. Cell death in normal and rough eye mutants of Drosophila. Development 1991; 113: 825-839.

    Google Scholar 

  11. Xu T, Rubin GM. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 1993; 117: 1223-1237.

    Google Scholar 

  12. Freeman M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 1996; 87: 651-660.

    Google Scholar 

  13. Banerjee U, Renfranz PJ, Pollock JA, Benzer S. Molecular characterization and expression of sevenless, a gene involved in neuronal pattern formation in the Drosophila eye. Cell 1987; 49: 281-291.

    Google Scholar 

  14. Hafen E, Basler K, Edstroem JE, Rubin GM. Sevenless, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science 1987; 236: 55-63.

    Google Scholar 

  15. Tio M, Moses K. The Drosophila TGF alpha homolog Spitz acts in photoreceptor recruitment in the developing retina. Development 1997; 124: 343-351.

    Google Scholar 

  16. Jarman AP, Grell EH, Ackerman L, Jan LY, Jan YN. Atonal is the proneural gene for Drosophila photoreceptors. Nature 1994; 369: 398-400.

    Google Scholar 

  17. Jarman AP, Sun Y, Jan LY, Jan YN. Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 1995; 121: 2019-2030.

    Google Scholar 

  18. Baker NE, Rubin GM. Effect on eye development of dominant mutations in Drosophila homologue of the EGF receptor. Nature 1989; 340: 150-153.

    Google Scholar 

  19. Lesokhin AM, Yu SY, Katz J, Baker NE. Several levels of EGF receptor signaling during photoreceptor specification in wildtype, Ellipse, and null mutant Drosophila. Dev Biol 1999; 205: 129-144.

    Google Scholar 

  20. Simon MA, Bowtell DD, Dodson GS, Laverty TR, Rubin GM. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 1991; 67: 701-716.

    Google Scholar 

  21. Brunner D, Oellers N, Szabad J, Biggs III WH, Zipursky SL, Hafen E. A gain-of-function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell 1994; 76: 875-888.

    Google Scholar 

  22. Leevers SJ, Weinkove D, MacDougall LK, Hafen E, Waterfield MD. The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO J 1996; 15: 6584-6594.

    Google Scholar 

  23. Diaz-Benjumea FJ, Hafen E. The sevenless signalling cassette mediates Drosophila EGF receptor function during epidermal development. Development 1994; 120: 569-578.

    Google Scholar 

  24. Baker NE, Rubin GM. Ellipse mutations in the Drosophila homologue of the EGF receptor affect pattern formation, cell division, and cell death in eye imaginal discs. Dev Biol 1992; 150: 381-396.

    Google Scholar 

  25. Sawamoto A, Taguchi A, Hirota Y, Yamada C, Jin M, Okano H. Argos induces programmed cell death in the developing Drosophila eye by inhibition of the ras pathway. Cell Death Differ 1998; 5: 262-270.

    Google Scholar 

  26. Rebay I, Rubin GM. Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway. Cell 1995; 81: 857-866.

    Google Scholar 

  27. Miller DT, Cagan RL. Local induction of patterning and programmed cell death in the developing Drosophila retina. Development 1998; 125: 2327-2335.

    Google Scholar 

  28. Grether ME, Abrams JM, Agapite J, White K, Steller H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 1995; 9: 1694-1708.

    Google Scholar 

  29. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H. Genetic control of programmed cell death in Drosophila. Science 1994; 264: 677-683.

    Google Scholar 

  30. Zhou L, Schnitzler A, Agapite J, Schwartz LM, Steller H, Nambu JR. Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proc Natl Acad Sci 1997; 94: 5131-5136.

    Google Scholar 

  31. Downward J. Ras signalling and apoptosis. Curr Opin Genet Dev 1998; 8: 49-54.

    Google Scholar 

  32. Staveley BE, Ruel L, Jin J, Stambolic V, et al. Genetic analysis of protein kinase B (AKT) in Drosophila. Curr Biol 1998; 8: 599-602.

    Google Scholar 

  33. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231-241.

    Google Scholar 

  34. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278: 687-689.

    Google Scholar 

  35. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318-1321.

    Google Scholar 

  36. Alessi DR, Cohen P. Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 1998; 8: 55-62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurada, P., White, K. Epidermal growth factor receptor: its role in Drosophila eye differentiation and cell survival. Apoptosis 4, 239–243 (1999). https://doi.org/10.1023/A:1009648724937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009648724937

Navigation