Skip to main content
Log in

Yttrium Acetate-Derived Particle Coatings for Mitigating Oxidation and Corrosion of Inconel 625

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

“Sol paint” that yields yttrium-based compounds was prepared by mixing four chemical ingredients, yttrium acetate tetrahydrate precursor, diethanolamine, isopropyl alcohol, and hydrochloric acid, and then applied as oxidation/corrosion resistant coatings for Inconel 625 substrates. Annealing the coatings at 500°C developed a coalescent microstructure of coarse particles consisting of amorphous yttrium carbonate as the major component and crystalline yttrium oxide (Y2O3) as the minor one. At 700°C, the yttrium carbonate was transformed into Y2O3 by decarbonation. Increasing the annealing temperature to 900°C led to the formation of the YCrO3 phase yielded by interaction between Y2O3 and the Cr2O3 which had arisen from the oxidation of the underlying Inconel; the YCrO3 phase created a particle coating with a densified microstructure. There were two key factors in mitigating the degree of oxidation of Inconel at 900°C in air: (1) an uptake of oxygen by Y2O3 in the coatings, and (2) a densified coating layer that suppresses the diffusion and permeation of oxygen through it. Furthermore, inhibiting the rate of NaCl-caused corrosion was not only due to the excellent coverage of particle coatings over the entire surfaces of the substrates, but also may be associated with a good adherence of the coatings to the substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Nyce, Am. Ceram. Soc. Bull. 68, 324 (1989).

    Google Scholar 

  2. M. Shane and M.L. McCartney, J. Mater. Sci. 25, 1537 (1990).

    Google Scholar 

  3. C.R.A. Catlow, in Nonstoichimetric Oxides edited by O.T. Sorensen (Academic Press, New York, 1981), p. 96.

    Google Scholar 

  4. K. Miyazawa, K. Suzuki, and M.Y. Wey, J. Am. Ceram. Soc. 78, 347 (1995).

    Google Scholar 

  5. J.V. Mantese, A.L. Micheli, A.H. Handi, and R.W. Vest, Mat. Res. Soc. Bulletin 14, 48 (1989).

    Google Scholar 

  6. J. Livage, M. Henry, J.P. Jolivet, and C. Sanchery, Mat. Res. Soc. Bulletin 15, 18 (1990).

    Google Scholar 

  7. P.Y. Chu and R.C. Buchaman, J. Mater. Res. 6, 1736 (1991).

    Google Scholar 

  8. N. Tohge, S. Takahashi, and T. Minami, J. Am. Ceram. Sci. 74, 67 (1991).

    Google Scholar 

  9. Y. Yan, S.R. Chaudhuri, and A. Sarkari, J. Am. Ceram. Sci. 79, 1061 (1996).

    Google Scholar 

  10. N.P. Bansal, J. Am. Ceram. Sci. 71, 666 (1988).

    Google Scholar 

  11. H.S. Gopalakrishnamurthy, M. Subbaral, and T.R. Narayanan Kutty, Inorg. Nucl. Chem. 37, 891 (1975).

    Google Scholar 

  12. L.J. Bellamy, The Infrared Spectra of Complex Molecules (Chapman and Hall, London, 1975), p. 386.

    Google Scholar 

  13. Z. Jiang and W.E. Rhine, Mat. Res. Soc. Symp. Proc. 286, 21 (1993).

    Google Scholar 

  14. R.A. Nyquist and R.O. Kagel, Infrared Spectra of Inorgnic Compounds (Academic Press, New York, 1971), p. 222.

    Google Scholar 

  15. B. Djuricic, D. Kolar, and M. Memic, J. Euro. Ceram. Soc. 9, 75 (1992).

    Google Scholar 

  16. D. Briggs and M.P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (John Wiley & Sons, New York, 1983), p. 359.

    Google Scholar 

  17. U. Geluis, P.F. Heden, J. Hedman, B.J. Lindberg, R. Mamne, R. Nordberg, C. Nordling, and K. Siegbahn, Phys. Soc. 2, 70 (1970).

    Google Scholar 

  18. J.S. Hammond, S.W. Gaarenstroom, and N. Winograd, Anal. Chem. 47, 2194 (1975).

    Google Scholar 

  19. J.P. Contour, A. Saleve, M. Froment, M. Garreau, J. Thevenin, and D.J. Warin, Microsc, Spectrosc. Electron. 4, 483 (1979).

    Google Scholar 

  20. A.B. Christie, J. Lee, I. Sutherland, and J. M. Walls, Appl. Surf. Sci. 15, 224 (1983).

    Google Scholar 

  21. J. Flahaut, L. Domange, M. Patrie, A. Bostsarron, and M. Guittard, Adv. Chem. Ser. 39, 179 (1963).

    Google Scholar 

  22. J. Duraud, F. Jollet, N. Thromat, M. Gautier, P. Maire, and C. Gressus, J. Am. Ceram. Soc. 73, 2467 (1990).

    Google Scholar 

  23. D.E. Passoja, H.F. Hillery, T.G. Kinisky, H.A. Six, W.T. Jansen, and J.A. Taylor, J. Vac. Sci. Technol. 21, 933 (1982).

    Google Scholar 

  24. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, and G.E. Muileberg, Handbook of X-ray Photoelecton Spectroscopy (Perkin-Elmer Corporaton, Minnesota, 1979), p. 98.

    Google Scholar 

  25. M. Sterm and A.L. Geary, J. Electrochem. Soc. 104, 56 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugama, T. Yttrium Acetate-Derived Particle Coatings for Mitigating Oxidation and Corrosion of Inconel 625. Journal of Sol-Gel Science and Technology 12, 35–48 (1998). https://doi.org/10.1023/A:1008653026137

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008653026137

Navigation