Skip to main content
Log in

Growth of anchorage-dependent mammalian cells on microstructures and microperforated silicon membranes

  • Papers
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Anchorage-dependent cells (mouse fibroblasts L929 and 3T3) were cultivated on microstructures made by semiconductor technology. Both cell lines showed normal growth on silicon surfaces covered with microelectrode arrays as well as on microperforated silicon membranes with square pores made by anisotropic etching (5, 10 or 20 μm edge length at the top and 1.2, 6.2 or 16.2 μm at the bottom). The cells spread over the 5 and 10 μm pores, but mostly failed to cover the 20 μm ones. They were able to cross the silicon membrane through the pores and to grow and spread on the under side of the membrane. Small pores (about 1 μm2) impeded but did not prevent cells crossing the membrane. Medium and large pores were freely crossed. Negative dielectrophoresis was used to achieve accurate positioning of cells above pores or to repel them from the chip surface (a.c., square wave, 2.5 V peak-to-peak, 5 MHz). The results are discussed with respect to their microtool applications for single-cell technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. O'NEILL, P. JORDAN and G. IRELAND, Cell 44 (1986) 489.

    Google Scholar 

  2. C. O'NEILL, P. JORDAN, P. RIDDLE and G. IRELAND, J. Cell Sci. 95 (1990) 577.

    Google Scholar 

  3. P. CLARK, P. CONNOLLY and G. R. MOORES,. 103 (1992) 287.

    Google Scholar 

  4. P. CLARK, ST. BRITLAND and P. CONNOLLY, 105 (1993) 203.

    Google Scholar 

  5. R. SINGHVI, A. KUMAR, G. P. LOPEZ, G. N. STEPHANOPOULOS, D. I. C. WANG, G. M. WHITESIDES and D. E. INGBER, Science 264 (1994) 696.

    Google Scholar 

  6. J. A. DOW, P. CLARK, P. CONNOLLY, A. S. G. CURTIS and C. D. W. WILKINSON, J. Cell Sci. Suppl. 8 (1987) 55.

    Google Scholar 

  7. P. CLARK, P. CONNOLLY, A. S. G. CURTIS, J. A. T. DOW and C. D. W. WILKINSON, Develop. 108 (1990) 635.

    Google Scholar 

  8. P. CLARK, P. CONNOLLY, A. S. G. CURTIS, J. A. T. DOW and C. D. W. WILKINSON, J. Cell Sci. 99 (1991) 73.

    Google Scholar 

  9. A. S. G. CURTIS and P. CLARK, Critic. Rev. Biocomp. 5 (1990) 343.

    Google Scholar 

  10. Y. JIMBO, H. P. C. ROBINSON and A. KAWANA, IEEE Transact. Biomed. Eng. 40 (1993) 804.

    Google Scholar 

  11. K. F. WEIBEZAHN, G. KNEDLITSCHEK, H. DERTINGER, W. BIER, T. SCHALLER and K. SCHUBERT, Bioforum 17 (1994) 49.

    Google Scholar 

  12. P. FROMHERZ, A. OFFENHAUSSER, T. VETTER and J. WEIS, Science 252 (1991) 1290.

    Google Scholar 

  13. S. TATIC-LUCIC, Y.-C. TAI, J. A. WRIGHT, J. PINE and T. DENISON, in Proceedings 7th International Conference on solid-State Sensors and Actuators, Transducers ′93, Yokohama, Japan (1993) p. 943.

  14. G. T. A. KOVACS, C. W. STORMENT, M. HALKS-MILLER, C. R. BELCZYNSKI, C. C. Della SANTINA, E. R. LEWIS and N. I. MALUF, IEEE Transact. Biomed. Eng. 41 (1994) 567.

    Google Scholar 

  15. I. GIAEVER and C. R. KEESE, Proc. Natl. Acad. Sci. 81 (1984) 3761.

    Google Scholar 

  16. R. LIND, P. CONNOLLY, C. D. W. WILKINSON, L. J. BRECKENRIDGE and J. A. T. DOW, Biosens. Bioelectron. 6 (1991) 359.

    Google Scholar 

  17. G. FUHR, W. M. ARNOLD, R. HAGEDORN, T. MüLLER, W. BENNECKE, B. WAGNER and U. ZIMMERMANN, Biochim. Biophys. Acta 1108 (1992) 215.

    Google Scholar 

  18. I. GIAEVER and C. R. KEESE, Proc. Natl. Acad. Sci. 88 (1991) 7896.

    Google Scholar 

  19. CH.-M. LO, C. R. KEESE and I. GIAEVER, Exp. Cell Res. 204 (1993) 102.

    Google Scholar 

  20. J. Z. BAO, C. C. DAVIS and R. E. SCHMUKLER, IEEE Trans. Biomed. Eng. 40 (1993) 364.

    Google Scholar 

  21. Th. SCHNELLE, R. HAGEDORN, G. FUHR, S. FIEDLER and T. MüLLER, Biochim. Biophys. Acta 1157 (1993) 127.

    Google Scholar 

  22. H. A. POHL, in “Dielectrophoresis” (Cambridge University Press, Cambridge, 1978).

    Google Scholar 

  23. R. PETHIG, Y. HUANG, X.-B. WANG and J. P. H. BURT, J. Phys. D: Appl. Phys. 24 (1992) 881.

    Google Scholar 

  24. W. SCHüTT, H. KLINKMANN, I. LAMPRECHT and T. WILSON, “Physical characterization of biological cells” (Verlag Gesundheit GmbH, Berlin, 1991).

    Google Scholar 

  25. G. FUHR, H. GLASSER, T. MüLLER and Th. SCHNELLE, Biochim. Biophys. Acta 1201 (1994) 353.

    Google Scholar 

  26. C. KöHLER, W. BRUNNER, C. H. EHRLICH, H. HUBER and K. REIMER, Microlectromic Eng. 21 (1993) 159.

    Google Scholar 

  27. B. LöCHEL, A. MACIOSZEK, J. STRUBE and H. HUBER, Microelectronic Eng. 11 (1990) 279.

    Google Scholar 

  28. G. FUHR, T. MüLLER, Th. SCHNELLE, R. HAGEDORN, A. VOIGT, S. FIEDLER, W. M. ARNOLD, U. ZIMMERMANN, B. WAGNER and A. HEUBERGER, Naturwissenschaften 81 (1994) 528.

    Google Scholar 

  29. G. A. DUNN and J. P. HEATH, Exp. Cell Res. 101 (1976) 1.

    Google Scholar 

  30. D. M. BRUNETTE, 164 (1986) 11.

    Google Scholar 

  31. G. FUHR and S. G. SHIRLEY, in Proceedings of Micro Mechanics Europe MME ′94, Pisa, Italy (1994) p. 164.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, E., Fuhr, G., Müller, T. et al. Growth of anchorage-dependent mammalian cells on microstructures and microperforated silicon membranes. J Mater Sci: Mater Med 7, 85–97 (1996). https://doi.org/10.1007/BF00058719

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058719

Keywords

Navigation