Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dystrophin deficiency markedly increases enterovirus-induced cardiomyopathy: A genetic predisposition to viral heart disease

Abstract

Both enteroviral infection of the heart and mutations in the dystrophin gene can cause cardiomyopathy. Little is known, however, about the interaction between genetic and acquired forms of cardiomyopathy. We previously demonstrated that the enteroviral protease 2A cleaves dystrophin; therefore, we hypothesized that dystrophin deficiency would predispose to enterovirus-induced cardiomyopathy. We observed more severe cardiomyopathy, worsening over time, and greater viral replication in dystrophin-deficient mice infected with enterovirus than in infected wild-type mice. This difference appears to be a result of more efficient release of the virus from dystrophin-deficient myocytes. In addition, we found that expression of wild-type dystrophin in cultured cells decreased the cytopathic effect of enteroviral infection and the release of virus from the cell. We also found that expression of a cleavage-resistant mutant dystrophin further inhibited the virally mediated cytopathic effect and viral release. These results indicate that viral infection can influence the severity and penetrance of the cardiomyopathy that occurs in the hearts of dystrophin-deficient individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dystrophin deficiency markedly increases enterovirus-mediated disruption of the sarcolemma.
Figure 2: Increased viral titers and localization of virus and Evans blue dye (EBD).
Figure 3: Mutation of dystrophin in hinge 3 (H3) region prevents cleavage of dystrophin by enteroviral protease 2A.
Figure 4: Dystrophin decreases the enterovirus-induced cytopathic effect and viral release in cultured cells.

Similar content being viewed by others

References

  1. Seidman, J.G. & Seidman, C. The genetic basis for cardiomyopathy: From mutation identification to mechanistic paradigms. Cell 104, 557–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Feldman, A.M. & McNamara, D. Myocarditis N. Engl. J. Med. 343, 1388–1398 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Towbin, J.A., Bowles, K.R. & Bowles, N.E. Etiologies of cardiomyopathy and heart failure. Nature Med. 5, 266–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Martino, T.A., Liu, P. & Sole, M.J. Viral infection and the pathogenesis of dilated cardiomyopathy. Circ. Res. 74, 182–188 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Baboonian, C., Davies, M.J., Booth, J.C. & McKenna, W.J. Coxsackie B viruses and human heart disease. Curr. Top. Microbiol. Immunol. 223, 31–52 (1997).

    CAS  PubMed  Google Scholar 

  6. Koenig, M., Monaco, A.P. & Kunkel, L.M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219–226 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Goldberg, S.J. et al. Serial left ventricular wall measurements in Duchenne's muscular dystrophy. J. Am. Coll. Cardiol. 2, 136–142 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Danilowicz, D., Rutkowski, M., Myung, D. & Schively, D. Echocardiography in duchenne muscular dystrophy. Muscle Nerve 3, 298–303 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Nigro, G., Comi, L.I., Politano, L. & Bain, R.J. The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int. J. Cardiol. 26, 271–277 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Towbin, J.A. et al. X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy dystrophin gene at the Xp21 locus. Circulation 87, 1854–1865 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Muntoni, F. et al. Brief report: Deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N. Engl. J. Med. 329, 921–925 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Ortiz-Lopez, R., Li, H., Su, J., Goytia, V. & Towbin, J.A. Evidence for a dystrophin missense mutation as a cause of X-linked dilated cardiomyopathy. Circulation 95, 2434–2440 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Badorff, C. et al. Enteroviral protease 2A cleaves dystrophin: Evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nature Med. 5, 320–326 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Badorff, C., Berkley, N., Mehrotra, S., Rhoads, R.E. & Knowlton, K.U. Enteroviral protease 2A directly cleaves dystrophin and is inhibited by a dystrophin-based substrate analogue. J. Biol. Chem. 275, 1191–1197 (2000).

    Article  Google Scholar 

  15. Lee, G.H., Badorff, C. & Knowlton, K.U. Dissociation of sarcoglycans and the dystrophin carboxyl terminus from the sarcolemma in enteroviral cardiomyopathy. Circ. Res. 87, 489–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Knowlton, K.U., Jeon, E.S., Berkley, N., Wessely, R. & Huber, S. A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of CVB3. J. Virol. 70, 7811–7818 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Straub, V., Rafael, J.A., Chamberlain, J.S. & Campbell, K.P. Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J. Cell Biol. 139, 375–385 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohn, R.D. et al. Prevention of cardiomyopathy in mouse models lacking the smooth muscle sarcoglycan-sarcospan complex. J. Clin. Invest. 107, R1–R7 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bergelson, J.M. et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J. Virol. 72, 415–419 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Clemens, P.R. et al. Recombinant truncated dystrophin minigenes: Construction, expression, and adenoviral delivery. Hum. Gene Ther. 6, 1477–1485 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, C.L., Pearlman, J.A., Chamberlain, J.S. & Caskey, C.T. Expression of recombinant dystrophin and its localization to the cell membrane. Nature 349, 334–336 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Petrof, B.J., Shrager, J.B., Stedman, H.H., Kelly, A.M. & Sweeney, H.L. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl. Acad. Sci. USA 90, 3710–3714 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clarke, M.S., Khakee, R. & McNeil, P.L. Loss of cytoplasmic basic fibroblast growth factor from physiologically wounded myofibers of normal and dystrophic muscle. J. Cell. Sci. 106 (Pt 1), 121–133 (1993).

    Google Scholar 

  24. Ervasti, J.M. & Campbell, K.P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122, 809–823 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Rafael, J.A. et al. Forced expression of dystrophin deletion constructs reveals structure-function correlations. J. Cell Biol. 134, 93–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Rueckert, R.R. Fundamental Virology. (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 477–522 (Raven, New York, 1996).

    Google Scholar 

  27. Luftig, R.B. & Lupo, L.D. Viral interactions with the host-cell cytoskeleton: The role of retroviral proteases. Trends Microbiol. 2, 178–182 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Jackson, P. & Bellett, A.J. Reduced microfilament organization in adenovirus type 5-infected rat embryo cells: a function of early region 1a. J. Virol. 55, 644–650 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Y. & Schneider, R.J. Adenovirus inhibition of cell translation facilitates release of virus particles and enhances degradation of the cytokeratin network. J. Virol. 68, 2544–2555 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shoeman, R.L. et al. Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc. Natl. Acad. Sci. USA 87, 6336–6340 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seipelt, J., Liebig, H.D., Sommergruber, W., Gerner, C. & Kuechler, E. 2A proteinase of human rhinovirus cleaves cytokeratin 8 in infected HeLa cells. J. Biol. Chem. 275, 20084–20089 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Vatta, M. et al. Molecular remodelling of dystrophin in patients with end-stage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet 359, 936–941 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Henke, A., Huber, S., Stelzner, A. & Whitton, J.L. The role of CD8+ T lymphocytes in coxsackievirus B3-induced myocarditis. J. Virol. 69, 6720–6728 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Myers and D. Rappaport for providing equipment and advice for cryosections, immunostaining and imaging; J. Chen and S. Evans for helpful discussions; A. Henke for the anti-CVB3 antibody; and P.R. Clemens and C.C. Lee for providing the mouse dystrophin expression vector. This work was supported in part by a US National Institutes of Health grant (5 R01 HL57365-03) and an American Heart Association Established Investigator Award (to K.U.K.); by Our Lady of Mercy Hospital, Catholic University of Korea (to G.H.L.); and by a training grant from the Deutsche Forschungsgemeinschaft (Ba 1668/1-1) (to C.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk U. Knowlton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, D., Lee, GH., Badorff, C. et al. Dystrophin deficiency markedly increases enterovirus-induced cardiomyopathy: A genetic predisposition to viral heart disease. Nat Med 8, 872–877 (2002). https://doi.org/10.1038/nm737

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing