Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of K+ channel gating by protein phosphorylation: structural switches of the inactivation gate

Abstract

Fast N–type inactivation of voltage–dependent potassium (Kv) channels controls membrane excitability and signal propagation in central neurons and occurs by a 'ball–and–chain'–type mechanism. In this mechanism an N–terminal protein domain (inactivation gate) occludes the pore from the cytoplasmic side. In Kv3.4 channels, inactivation is not fixed but is dynamically regulated by protein phosphorylation. Phosphorylation of several identified serine residues on the inactivation gate leads to reduction or removal of fast inactivation. Here, we investigate the structure–function basis of this phospho–regulation with nuclear magnetic resonance (NMR) spectroscopy and patch–clamp recordings using synthetic inactivation domains (ID). The dephosphorylated ID exhibited compact structure and displayed high–affinity binding to its receptor. Phosphorylation of serine residues in the N– or C–terminal half of the ID resulted in a loss of overall structural stability. However, depending on the residue(s) phosphorylated, distinct structural elements remained stable. These structural changes correlate with the distinct changes in binding and unbinding kinetics underlying the reduced inactivation potency of phosphorylated IDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of phosphorylation on inactivation kinetics is site specific.
Figure 2: Effect of phosphorylation is not due to changes in net charge of the inactivation gate.
Figure 3: Structure of the phospho ID S–P 15,21 and the dephospho Raw3–ID.
Figure 4: Structure of the phospho ID S–P 8 and the dephospho Raw3–ID.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Greengard, P., Jen, J., Nairn, A.C. & Stevens, C.F. Science 253, 1135–1138 (1991).

    Article  CAS  Google Scholar 

  2. Huganir, R.L., Delcour, A.H., Greengard, P. & Hess, G.P. Nature 321, 774–776 (1986).

    Article  CAS  Google Scholar 

  3. Numann, R., Catteral, W.A. & Scheuer, T. Science 254, 115–118 (1991).

    Article  CAS  Google Scholar 

  4. Drain, P., Dubin, A.E. & Aldrich, R.W. Neuron 12, 1097–1109 (1994).

    Article  Google Scholar 

  5. Covarrubias, M., Wei, A., Salkoff, L. & Vyas, T.B. Neuron 13, 1403–1412 (1994).

    Article  CAS  Google Scholar 

  6. Beck, E.J., Sorensen, R.G., Slater, S.J. & Covarrubias, M. J. Gen. Physiol. 112, 71–84 (1998).

    Article  CAS  Google Scholar 

  7. Armstrong, C. & Bezanilla, F.J. J. Gen. Physiol. 70, 567–590 (1977).

    Article  CAS  Google Scholar 

  8. Hoshi, T., Zagotta, W.N. & Aldrich, R.W. Science 250, 533–538 (1990).

    Article  CAS  Google Scholar 

  9. Zagotta, W.N., Hoshi, T. & Aldrich, R.W. Science 250, 568–571 (1990).

    Article  CAS  Google Scholar 

  10. Murrell–Lagnado, R.D. & Aldrich, R.W. J. Gen. Physiol. 102, 949–975 (1993).

    Article  Google Scholar 

  11. Rettig, J. et al. EMBO J. 11, 2473–2486 (1992).

    Article  CAS  Google Scholar 

  12. Demo, S.D. & Yellen, G. Neuron 7, 743–753 (1991).

    Article  CAS  Google Scholar 

  13. Antz, C. et al. Nature 385, 272–275 (1997).

    Article  CAS  Google Scholar 

  14. Ruppersberg, J.P., Frank, R., Pongs, O. & Stocker, M. Nature 353, 657–660 (1991).

    Article  CAS  Google Scholar 

  15. Stephens, G.J. & Robertson, B. J. Physiol. 484, 1–13 (1995).

    Article  CAS  Google Scholar 

  16. Oliver, D., Hahn, H., Antz, C., Ruppersberg, J.P. & Fakler, B. Biophys. J. 74, 2318–2326 (1998).

    Article  CAS  Google Scholar 

  17. Johnson, L.N. & O'Reilly, M. Curr. Opin. Struct. Biol. 6, 762–769 (1996).

    Article  CAS  Google Scholar 

  18. Bundi, A. & Wüthrich, K. Biopolymers 18, 185–297 (1979).

    Google Scholar 

  19. Lin, K., Rath, V.L., Dai, S.C., Fletterick, R.J. & Hwang, P.K. Science 273, 1539–1541 (1996).

    Article  CAS  Google Scholar 

  20. Russo, A., Jeffrey, P.D. & Pavletich, N.P. Nature Struct. Biol. 3, 696–700 (1996).

    Article  CAS  Google Scholar 

  21. Hoffman, D.A., Magee, J.C., Colbert, C.M. & Johnston, D. Nature 387, 869–875 (1997).

    Article  CAS  Google Scholar 

  22. Hille, B. Ionic channels of excitable membranes (Sinauer Associates Inc., Sunderland, Massachusetts; 1992).

    Google Scholar 

  23. Debanne, D., Guerineau, N.C., Gähwiler, B.H. & Thompson, S.M. Nature 389, 286–289 (1997).

    Article  CAS  Google Scholar 

  24. Fakler, B. et al. Cell 80, 149–154 (1995).

    Article  CAS  Google Scholar 

  25. Frank, R. & Gausepohl, H. Modern methods in protein chemistry (de Gruyter, Berlin, Federal Republic of Germany, 1988).

    Google Scholar 

  26. Freund, J. & Kalbitzer, H.R. J. Biomol. NMR 5, 321–322 (1995).

    Article  CAS  Google Scholar 

  27. Jeener, J. J. Chem. Phys. 71, 4546–4553 (1979).

    Article  CAS  Google Scholar 

  28. Aue, W.P., Bartholdi, E. & Ernst, R. J. Chem. Phys. 64, 2229–2246 (1976).

    Article  CAS  Google Scholar 

  29. Davis, D.G. & Bax, A. J. Am. Chem. Soc. 107, 2820–2821 (1985).

    Article  CAS  Google Scholar 

  30. Brünger, A.T. X–PLOR (version 3.851) manual (Yale University Press, New Haven, Connecticut, 1992).

    Google Scholar 

  31. Kirkpatrick, S., Gelatt, G.C. & Vecchi, M.P. Science 220, 671–680 (1983).

    Article  CAS  Google Scholar 

  32. Neidig. K.P. et al. J. Biomol. NMR 6, 255–270 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K.C. Holmes for continuous support, M. Geyer for technical help and J.P. Adelman, J. Maylie, J. Mosbacher and G. Yellen for helpful comments and reading of the manuscript. The work was supported by the Deutsche Forschungsgemeinschaft (Fa 332/2–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fakler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antz, C., Bauer, T., Kalbacher, H. et al. Control of K+ channel gating by protein phosphorylation: structural switches of the inactivation gate. Nat Struct Mol Biol 6, 146–150 (1999). https://doi.org/10.1038/5833

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing