Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carboxyl proteinase from Pseudomonas defines a novel family of subtilisin-like enzymes

Abstract

The crystal structure of a pepstatin-insensitive carboxyl proteinase from Pseudomonas sp. 101 (PSCP) has been solved by single-wavelength anomalous diffraction using the absorption peak of bromide anions. Structures of the uninhibited enzyme and of complexes with an inhibitor that was either covalently or noncovalently bound were refined at 1.0–1.4 Å resolution. The structure of PSCP comprises a single compact domain with a diameter of 55 Å, consisting of a seven-stranded parallel β-sheet flanked on both sides by a number of helices. The fold of PSCP is a superset of the subtilisin fold, and the covalently bound inhibitor is linked to the enzyme through a serine residue. Thus, the structure of PSCP defines a novel family of serine-carboxyl proteinases (defined as MEROPS S53) with a unique catalytic triad consisting of Glu 80, Asp 84 and Ser 287.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two views of the PSCP molecule.
Figure 2: Structure-based sequence alignment of PSCP and subtilisin (PDB code 1GCI)15.
Figure 3: Chemical formulas and the electron density for the inhibitors of PSCP.
Figure 4: Residues forming the active site of PSCP in comparison with subtilisin.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Oda, K., Sugitani, M., Fukuhara, K. & Murao, S. Biochim. Biophys. Acta 923, 463–469 (1987).

    Article  CAS  Google Scholar 

  2. Oda, K., Takahashi, T., Tokuda, Y., Shibano, Y. & Takahashi, S. J. Biol. Chem. 269, 26518–26524 (1994).

    CAS  PubMed  Google Scholar 

  3. Ito, M., Narutaki, S., Uchida, K. & Oda, K. J. Biochem. (Tokyo), 125, 210–216 (1999).

    Article  CAS  Google Scholar 

  4. Oyama, H., Abe, S., Ushiyama, S., Takahashi, S. & Oda, K. J. Biol. Chem. 274, 27815–27822 (1999).

    Article  CAS  Google Scholar 

  5. Davies, D.R. Annu. Rev. Biophys. Biophys. Chem. 19, 189–215 (1990).

    Article  CAS  Google Scholar 

  6. Barrett, A.J., Rawlings, N.D. & Woessner, J.F. Handbook of proteolytic enzymes (Academic Press, London; 1998).

    Google Scholar 

  7. Murao, S. et al. J. Biol. Chem. 268, 349–355 (1993).

    CAS  PubMed  Google Scholar 

  8. Shibata, M., Dunn, B.M. & Oda, K. J. Biochem. (Tokyo) 124, 642–647 (1998).

    Article  CAS  Google Scholar 

  9. Sleat, D.E. et al. Science 277, 1802–1805 (1997).

    Article  CAS  Google Scholar 

  10. Rawlings, N.D. & Barrett, A.J. Biochim. Biophys. Acta 1429, 496–500 (1999).

    Article  CAS  Google Scholar 

  11. Lin, L., Sohar, I., Lackland, H. & Lobel, P. J. Biol. Chem. 276, 2249–2255 (2001).

    Article  CAS  Google Scholar 

  12. Kwon, H.K., Kim, H. & Ahn, T.I. Korean J. Biol. Sci. 3, 221–228 (1999).

    Article  CAS  Google Scholar 

  13. Wright, C.S., Alden, R.A. & Kraut, J. Nature 221, 235–242 (1969).

    Article  CAS  Google Scholar 

  14. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  15. Kuhn, P. et al. Biochemistry 37, 13446–13452 (1998).

    Article  CAS  Google Scholar 

  16. Robertus, J.D., Kraut, J., Alden, R.A. & Birktoft, J.J. Biochemistry 11, 4293–4303 (1972).

    Article  CAS  Google Scholar 

  17. Miller, M., Rao, J.K.M., Wlodawer, A. & Gribskov, M.R. FEBS Lett. 328, 275–279 (1993).

    Article  CAS  Google Scholar 

  18. Dodson, G. & Wlodawer, A. Trends Biochem. Sci. 23, 347–352 (1998).

    Article  CAS  Google Scholar 

  19. Delbaere, L.T. & Brayer, G.D. J. Mol. Biol. 183, 89–103 (1985).

    Article  CAS  Google Scholar 

  20. Bullock, T.L., Breddam, K. & Remington, S.J. J. Mol. Biol. 255, 714–725 (1996).

    Article  CAS  Google Scholar 

  21. Schechter, I. & Berger, A. Biochem. Biophys. Res. Commun. 27, 157–162 (1967).

    Article  CAS  Google Scholar 

  22. Bode, W., Papamokos, E. & Musil, D. Eur. J. Biochem. 166, 673–692 (1987).

    Article  CAS  Google Scholar 

  23. Oda, K., Nakatani, H. & Dunn, B.M. Biochim. Biophys. Acta 1120, 208–214 (1992).

    Article  CAS  Google Scholar 

  24. Dauter, Z., Li, M. & Wlodawer, A. Acta Crystallogr. D 57, 239–249 (2001).

    Article  CAS  Google Scholar 

  25. Oda, K., Fukuda, Y., Murao, S., Uchida, K. & Kainosho, M. Agric. Biol. Chem. 53, 405–415 (2000).

    Google Scholar 

  26. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. Sheldrick, G.M. In Direct methods for solving macromolecular structures. (ed. Fortier, S.) 401–411 (Kluwer Academic Publishers, Dordrecht; 1998).

    Book  Google Scholar 

  28. de la Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  29. Cowtan, K.D. & Main, P. Acta Crystallogr. D 52, 43–48 (1996).

    Article  CAS  Google Scholar 

  30. Perrakis, A., Morris, R. & Lamzin, V.S. Nature Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  31. Jones, T.A. & Kieldgaard, M. Methods Enzymol. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  32. Sheldrick, G.M. & Schneider, T.R. Methods Enzymol. 277, 319–343 (1997).

    Article  CAS  Google Scholar 

  33. Engh, R. & Huber, R. Acta Crystallogr. A 47, 392–400 (1991).

    Article  Google Scholar 

  34. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  35. Carson, M. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Barrett for helpful discussions, A. Arthur for editorial comments and J. Alexandratos for help in preparation of the figures. This work was supported in part by a Grant-in-Aid for Scientific Research and a Grant-in-Aid for International Scientific Research (Joint Research) from the Ministry of Education, Science, Sports and Culture of Japan to K.O., by NIH grants to B.M.D., and in part with Federal funds from the National Cancer Institute, National Institutes of Health. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products or organizations imply endorsement by the U. S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Wlodawer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wlodawer, A., Li, M., Dauter, Z. et al. Carboxyl proteinase from Pseudomonas defines a novel family of subtilisin-like enzymes. Nat Struct Mol Biol 8, 442–446 (2001). https://doi.org/10.1038/87610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87610

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing