Skip to main content
Log in

A differential scanning calorimetry study on poly(ethylene terephthalate) isothermally crystallized at stepwise temperatures: multiple melting behavior re-investigated

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The multiple melting behavior of poly(ethylene terephthalate) (PET) was investigated with differential scanning calorimetry (DSC) by examining PET samples having been subjected to special schemes of crystallization and annealing treatment at multiple descending temperatures. Upon such step-wise annealing in decreasing temperatures, the existence of doublet melting peaks in addition to a series of multiple minor peaks in the PET has been demonstrated using carefully designed thermal schemes. Using the Hoffman theory, multiple lamellae populations, might be suggested to be simultaneously present in the PET subjected to such thermal treatments. However, direct experimental evidence has yet to be provided. The low-temperature minor crystals simply melt during normal scanning without having time enough to reorganize into higher-melt crystals. Nevertheless, the effect of scanning on non-isothermal crystallization does exist but is primarily confined to the temperature range much below the main melting region where the crystallization of polymer chains can progress at a reasonable rate. At higher temperatures near the main melting region, annealing for extended times is required in order to result in relative changes of the melting endotherms of the upper and lower peaks in the main melting doublet. In all we have shown that interpretations of the multiple melting phenomenon in semicrystalline polymers can be better refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell JP, Slade PE, Dumbleton JH (1968) J Polym Sci A-2, 6:1773–1781

    Google Scholar 

  2. Xenopoulos A, Wunderlich B (1990) J Polym Sci Polym Phys Ed 28:2271–2290

    Google Scholar 

  3. Holdsworth P, Turner-Jones A (1971) Polymer 12:195–209

    Google Scholar 

  4. Alfonso GC, Pedemonte E, Ponzetti L (1979) Polymer 20:104

    Google Scholar 

  5. Sweet GE, Bell JP (1972) J Polym Sci A-2, 10:1273–1283

    Google Scholar 

  6. Lin SB, Koenig JL (1983) J Polym Sci, Polym Phys Ed 21:2365–2378

    Google Scholar 

  7. Fountain F, Ledent J, Groeninckx G, Reynaers H (1982) Polymer 23:185–191

    Google Scholar 

  8. Roberts RC (1969) Polymer 10:117–125

    Google Scholar 

  9. Hobbs SY, Pratt CF (1975) Polymer 16:462

    Google Scholar 

  10. Stein RS, Misra A (1980) J Polym Sci, Phys Ed 18:327–342

    Google Scholar 

  11. Yeh JT, Runt J (1989) J Polym Sci, Polym Phys Ed 27:1543–1550

    Google Scholar 

  12. Ludwig HJ, Eyerer P (1988) Polym Eng Sci 28:143–146

    Google Scholar 

  13. Boon J, Challa G, van Krevelen DW (1968) J Polym Sci, Polym Phys Ed 6:1791

    Google Scholar 

  14. Samuels RJ (1975) J Polym Sci, Polym Phys Ed 13:1417–1446

    Google Scholar 

  15. Lovering EG, Wooden DC (1969) J Polym Sci, Polym Phys 7:1639

    Google Scholar 

  16. Prest Jr WM, Lucas DJ (1975) J Appl Phys 46:4136

    Google Scholar 

  17. Kim J, Nichols ME, Robertson RE (1994) J Polym Sci, Polym Phys 32:887–899

    Google Scholar 

  18. Nichols ME, Robertson RE (1992) J Polym Sci, Polym Phys Ed 30:305–307

    Google Scholar 

  19. Todoki M, Kawaguchi T (1977) J Polym Sci, Polym Phys Ed 15:1067

    Google Scholar 

  20. Cheng SZD, Pan R, Wunderlich B (1988) Makromol Chem 189:2443–1458.

    Google Scholar 

  21. Cebe P, Chung S (1990) Polym Compos 11:265

    Google Scholar 

  22. Huo P, Cebe P (1992) Colloid Polym Sci 270:840–852

    Google Scholar 

  23. Blundell DJ (1987) Polymer 28:2248–2251

    Google Scholar 

  24. Lee Y, Porter RS, Lin JS (1989) Macromolecules 22:1756–1760

    Google Scholar 

  25. Lee Y, Porter RS (1987) Macromolecules 20:1336–1341.

    Google Scholar 

  26. Bassett DC, Olley RH, Al-Raheil IAM (1988) Polymer 29:1745–1754

    Google Scholar 

  27. Cheng SZD, Wu ZQ, Wunderlich B (1987) Macromolecules 20:2802–2810

    Google Scholar 

  28. Marand H, Prasad A (1992) Macromolecules 25:1731–1736

    Google Scholar 

  29. Lovinger AJ, Hudson SD, Davies DD (1992) Macromolecules 25:1759

    Google Scholar 

  30. Chen C-Y, Woo EM (1995) Polym J 27:361–370

    Google Scholar 

  31. Ko TY, Woo EM (1995) Polymer accepted

  32. Woo EM, Chen JM (1995) J Polym Sci, Polym Phys 33:1985

    Google Scholar 

  33. Bassett DC, Patel D (1994) Polymer 35:1855

    Google Scholar 

  34. Lauritzen JI, Hoffman JD (1960) J Res Nat Bur Stand A64:73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, E.M., Ko, T.Y. A differential scanning calorimetry study on poly(ethylene terephthalate) isothermally crystallized at stepwise temperatures: multiple melting behavior re-investigated. Colloid Polym Sci 274, 309–315 (1996). https://doi.org/10.1007/BF00654051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654051

Key words

Navigation