Skip to main content
Log in

Prüfung auf Kombinationseffekte von Quercetin mit den Herbiziden Atrazin, Cyanazin und Gesamprim in Mutagenitätstests

Combination effects of quercetin with the herbicides atrazine, cyanazine or gesamprim in mutagenicity tests

  • Originalarbeiten
  • Published:
Zeitschrift für Ernährungswissenschaft Aims and scope Submit manuscript

Zusammenfassung

Das in Plfanzen vorkommende Flavonol Quercetin und die zu den Triazinen gehörenden Herbizide Atrazin, Cyanazin und Gesamprim® wurden einzeln und in Kombination miteinander auf genotoxische Wirkungen untersucht. Es wurden die Induktion von Schwesterchromatidaustauschen (SCE-Test) und von Mutationen zur 6-Thioguaninresistenz (HPRT-Test) an Ovarzellen des Chinesischen Hamsters (CHO-Zellen) bestimmt. Während sich in SCE-Test keine Hinweise auf genotoxische Wirkungen ergaben, verursachten die Prüfsubstanzen im HPRT-Test nach metabolischer Aktivierung durch zugesetzte subzelluläre Enzympräparate der Rattenleber (S9-Mix) leicht erhöhte Mutationsraten. Die Kombinationen von zwei oder drei Prüfsubstanzen verursachten keine deutliche Zunahme der genotoxischen Wirkung.

Summary

The plant flavonol quercetin and the triazine herbicides atrazine, cyanazine, and gesamprim were examined individually and in combination for the induction of genotoxic effects. The sister chromatid exchange (SCE) assay and the gene mutation assay for 6-thioguanine resistance (HPRT) were carried out with Chinese hamster ovary (CHO) cells. Whereas no evidence of an increased SCE rate was found, the test substances caused a slightly increased mutation rate in the HPRT assay after metabolic activation with a subcellular liver enzyme preparation. Combination studies with two or three of the test substances did not result in higher mutation rates than those observed for the individual compounds tested singly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutation Res 31:347–364

    Article  CAS  Google Scholar 

  2. Arcos JC, Woo JT, Lai DY (1988) Data basis on binary combination effects of chemical carcinogens. Environ Carcinog Rev 6:1–150

    Article  Google Scholar 

  3. Berger MR, Schmähl D, Edler L (1990) Implications of the carcinogenic hazard of low doses of three hepatocarcinogenic N-nitrosamines. In J Cancery Res 81:598–606

    CAS  Google Scholar 

  4. Berger MR (1991) Risk assessment of exposure to three carcinogens with different organotropy in rats. Nitroso compounds: Biological mechanisms, exposures and cancer etiology. Kona, Hawaii, International Agency for Research on Cancer, pp 49

    Google Scholar 

  5. Bjeldanes LF and Chang GW (1977) Mutagenic activity of quercetin and related compounds. Science 197:577–578

    Article  CAS  Google Scholar 

  6. Peryt B, Miloszewska J, Tudek B, Zielenska M and Szymczyk T (1988) Antimutagenic effects of several subfractions of extract from wheat sprout toward benzo(a)pyrene-induced mutagenicity in strain TA98 of Salmonella typhimurium. Mutation Res 206:221–225

    Article  CAS  Google Scholar 

  7. Brown JP (1980) A review of the genetic effects of naturally occurring flavonoids, anthraquinones and related compounds. Mutation Res 75:243–277

    Article  CAS  Google Scholar 

  8. Butler MA, Hoagland RE (1989) Genotoxicity assessment of atrazine and some major metabolites in the Ames test. Bull Environment Contam Toxicol 43:797–804

    Article  CAS  Google Scholar 

  9. Diehl JF (1992) Die toxische Gesamtsituation heute. Gedanken zum WHO-Bericht „Diet, Nutrition and the Prevention of Chronic Disease“. Z Ernährungswiss 31:225–245

    Article  CAS  Google Scholar 

  10. Elliger CA, Henika PR and MacGregor IT (1984) Mutagenicity of flavones, chromones and acetophenomes in Salmonella typhimurium. Mutation Research 135:77–86

    Article  CAS  Google Scholar 

  11. Falk HL (1976) Possible mechanisms of combination effects in chemical carcinogenesis. Oncology 33:77–85

    Article  CAS  Google Scholar 

  12. Gentil JM and Gentil GJ (1991) The metabolic activation of 4-nitro-o-phenylenediamine by chlorophyll-containing plant extracts: The relationship between mutagenicity and antimutagenicity. Mutation Res 250:79–86

    Article  Google Scholar 

  13. Gupta RS (1984) Genetic markers for quantitative mutagenesis studies in Chinese hamster ovary cells: application to mutagen screening studies. In: Kilbey BJ and Legators M, eds, Handbook of Mutagenicity Test Procedures, 2nd edit, Elsevier, Amsterdam, 291–310

    Chapter  Google Scholar 

  14. Hayatsu H, Arimoto S and Negishi T (1988) Dietary inhibitors of mutagenesis and carcinogenesis. Mutation Res 202:429–446

    Article  CAS  Google Scholar 

  15. Kommission für Pflanzenschutz, Pflanzenbehandlungs- und Vorratsschutzmittel der Deutschen Forschungsgemeinschaft, Mitteilung IX (1975) Wirkungen von Kombinationen der Pestizide. DFG, Bonn-Bad Godesberg

    Google Scholar 

  16. Macgregor JT and Jurd L (1987) Mutagenicity of plant flavonoids: structural requirements for mutagenic activity in S. typhimurium. Mutation Res 54:297–309

    Article  Google Scholar 

  17. Mathias M, Gilot-Delhalle J, Moutschen J (1989) Mutagenicity of atrazine in Schizosaccharomyces pombe with and without metabolic activation by maize. Environm Exp Bot 29:237–240

    Article  CAS  Google Scholar 

  18. Matijesevic Z, Erceg Z, Denic R, Bacun V, Alacevic M (1980) Mutagenicity of herbicide cyanazine: plant activation bioassay. Mutat Res 74:212

    Article  Google Scholar 

  19. Meisner LF, Belluck DA, Roloff BD (1992) Cytogenetic effects of alacholor and/or atrazine in vivo and in vitro. Environm Molec Mutagen 19:77–82

    Article  CAS  Google Scholar 

  20. Moriya M, Ohta T, Watanabe K, Miyazawa T, Kato K, Shirasu Y (1983) Further mutagenicity studies on pesticides in bacterial reversion assay systems. Mutation Res 116:185–216

    Article  CAS  Google Scholar 

  21. Perry P, Wolff S (1974) New Giemsa method for differential staining of sister chromatids. Nature (London) 251:156–158

    Article  CAS  Google Scholar 

  22. Pool BL (1988) Short-term tests as a tool in the identification of combinations and of combination effects in carcinogenesis. In: Schmähl D (ed), Combination Effects in Chemical Carcinogenesis, VCH Verlagsgesellschaft, Weinheim, pp 45–64

    Google Scholar 

  23. Soasa RL and Marletta MA (1985) Inhibition of cytochrome P-450 activity in rat liver microsomes by the naturally occurring flavonoid quercetin. Arch Biochem Biophys 240:345–357

    Article  Google Scholar 

  24. Takayama S, Hasegawa H, Ohgaki H (1989) Combination effects of forty carcinogens administered at low doses to male rats. Jpn J Cancer Res 80:732–736

    Article  CAS  Google Scholar 

  25. Vrijsen R, Michotte Y and Boeyé A (1990) Metabolic activation of quercetin mutagenicity. Mutation Res 232:243–248

    Article  CAS  Google Scholar 

  26. WHO (1990) Atrazine Health and Safety Guide, Health and Safety Guide no 47, Geneva

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guigas, C., Pool-Zobel, B.L. & Diehl, J.F. Prüfung auf Kombinationseffekte von Quercetin mit den Herbiziden Atrazin, Cyanazin und Gesamprim in Mutagenitätstests. Z Ernährungswiss 32, 131–138 (1993). https://doi.org/10.1007/BF01614756

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01614756

Schlüsselwörter

Key words

Navigation