Skip to main content
Log in

Comparative evaluation of quantum theory of nerve excitation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Deliberate evaluation of the quantum theory of nerve excitation is made by comparing it with Hill's theory in fitting the experimental data on threshold-frequency relation, optimum frequency (v0) for nerve excitation and strength-duration relation. Decrease of v0 and increase of all the time constants (Hill's λ andk, Wei'sT 2 and spike durationw) with decreasing temperature are interpreted on the basis of the dipole relaxation timeT 2 but inexplicable from Hill's theory or any other existing theory. The closeness ofk,T 2 andw values is explained. A variety of experimental results obtained by others is discussed. Finally, a comparison is made between the Hodgkin-Huxley equations and the quantum theory. Most of the facts (electrical and non-electrical) tend to support the thesis that nerve excitation is a macroscopic expression of quantum transitions of dipoles between energy states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Abott, B. C. and J. V. Howarth, 1973. “Heat studies in excitable tissues.”Physiol. Rev.,53, 120–158.

    Google Scholar 

  • Adey, W. R. 1973. “Biophysical and metabolic bases of cooling effects on cat cortical membrane potentials.”UCLA Brain Res. Inst. Tech. Report.

  • Arndt, R. and L. D. Roper. 1972. “Quantitative comparison of dipole models for steadystate currents in excitable membranes.”Bull. Math. Biophys.,34, 305–324.

    Google Scholar 

  • —, J. D. Bond and L. D. Roper. 1972. “A fit to nerve membrane rectification curves with a double-dipole layer membrane model.”Bull. Math. Biophys.,34, 151–172.

    Google Scholar 

  • Binstock, L. and L. Goldman. 1969. “Current and voltage clamped studies inMyxicola giant axons.”J. Gen. Physiol.,54, 730–740.

    Article  Google Scholar 

  • Blair, H. A. 1932. “On the intensity-time relation for stimulation by electric currents, I, II.”J. Gen. Physiol.,15, 709–755.

    Article  Google Scholar 

  • —. 1934. “Conduction in nerve fibres.”Ibid.,18, 125–142.

    Article  Google Scholar 

  • —. 1936. “Kinetics of the excitatory process.”Cold Spr. Harb. Symp. quant. Biol.,4, 63–72.

    Google Scholar 

  • Cohen, L. B., R. D. Keynes and B. Hille. 1968. “Light scattering and birefringence changes during nerve activity.”Nature,218, 438–441.

    Article  Google Scholar 

  • Cole, K. S. 1968. “Membranes, Ions and Impulses.” pp. 318–319. Berkeley: Univ. Calif. Press.

    Google Scholar 

  • —, R. Guttman and F. Bezanilla. 1970. “Nerve membrane excitation without threshold.”Proc. Natn. Acad. Sci.,65, 884–891.

    Article  Google Scholar 

  • Frankenhaeuser, B. and A. L. Hodgkin, 1957. “The action of calcium on the electrical properties of squid axons.”J. Physiol., Lond.,137, 218–244.

    Google Scholar 

  • Fraser, A. and A. H. Frey. 1968. “Electromagnetic emission at micro wavelengths from active nerves.”Biophys. J.,8, 731–734.

    Google Scholar 

  • Gasser, H. S. 1931. “Nerve activity as modified by temperature.”Am. J. Physiol.,97, 254–270.

    Google Scholar 

  • Hill, A. V. 1936a. Excitation and accommodation in nerve.Proc. R. Soc. Lond. 119, 305–355.

    Google Scholar 

  • —. 1936b. “The strength-duration relation for electric excitation of medullated nerve.”Ibid.,119, 440–453.

    Google Scholar 

  • —, B. Katz and D. Y. Solandt. 1936. “Nerve excitation by alternating current.” —Ibid.,,B121, 74–133.

    Google Scholar 

  • Hodgkin, A. L. 1951. “The ionic basis of electrical activity in nerve and muscle.”Biol. Rev.,26, 339–409.

    Google Scholar 

  • — and A. F. Huxley. 1952. “A quantitative description of membrane current and its application to conduction and excitation in nerve.”J. Physiol., Lond.,117, 500–544.

    Google Scholar 

  • — and B. Katz. 1949. “The effect of temperature on the electrical activity of the giant axon of the squid.”Ibid.,109, 240–249.

    Google Scholar 

  • Howarth, J. V., R. D. Keynes and J. M. Ritchie. 1968. “The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres.”J. Physiol., Lond.,194, 745–793.

    Google Scholar 

  • Inoue, I., Y. Kobatake and I. Tasaki. 1973. “Excitability, instability and phase transitions in squid axon membrane under internal perfusion with dilute salt solutions.”Biochim. Biophys. Acta. 307, 471–477.

    Article  Google Scholar 

  • Johnson, F. H., H. Eyring and M. J. Polissar, 1954.The Kinetic Basis of Molecular Biology, p. 656. New York, Wiley.

    Google Scholar 

  • Katz, B. 1939.Electric Excitation of Nerve, Oxford. Univ Press.

    Google Scholar 

  • Monnier, A. M. 1934.L'Excitation Electrique des Tissues. Paris: Hermann.

    Google Scholar 

  • Rashevsky, N. 1933. “Outline of a physico-mathematical theory of excitation and inhibition.”Protoplasma,20, 42–56.

    Google Scholar 

  • — 1960.Mathematical Biophysics Vol. 1, 3rd. rev. New York: Dover.

    Google Scholar 

  • Segal, J. R. 1968. “Surface charge of giant axons of squid and lobster.”Biophys. J.,8, 470–489.

    Google Scholar 

  • Sherebrin, M. H. 1972. “Changes in infrared spectrum of nerve during excitation.”Nature, New Biol.,235, 122–124.

    Google Scholar 

  • Singer, J. R. 1959.Masers. New York: Wiley.

    Google Scholar 

  • Solandt, D. Y. 1936. “The measurement of ‘accommodation’ in nerve.”Proc. R. Soc. Lond.,B119, 355–379.

    Article  Google Scholar 

  • Turner, R. S. 1955. “Relation between temperature and conduction in nerve fibres of different sizes.”Physiol. Zool.,28, 55–61.

    Google Scholar 

  • Van Lamsweerde-Gallez, D. and A. Messen. 1974. “Surface dipoles, surface charges and negative steady-state resistance in biological membranes.”J. Biol. Phys.,2, 75–102.

    Article  Google Scholar 

  • Wei, L. Y. 1968. “Electrical dipole theory of chemical synaptic transmission.”Biophys. J.,8, 396–414.

    Article  Google Scholar 

  • —. 1969a. “Role of surface dipoles on axon membrane.”Science,163, 280–282.

    Google Scholar 

  • —. 1969b. “Molecular mechanisms of nerve excitation and conduction.”Bull. Math. Biophys.,31, 39–58.

    Google Scholar 

  • —. 1971a. “Quantum Theory of nerve excitation.”Ibid.,33, 187–194.

    Google Scholar 

  • —. 1971b. “Possible origin of action potential and birefringence change in nerve axon.”Ibid.,33, 521–537.

    Google Scholar 

  • —. 1972. “Dipole theory of heat production and absorption in nerve axon.”Biophys. J.,12, 1159–1170.

    Google Scholar 

  • —. 1973. “Quantum theory of time-varying stimulation in nerve.”Bull. Math. Biol.,35, 359–374.

    MATH  Google Scholar 

  • —. 1974. “Dipole mechanisms of electrical, optical and thermal energy tranductions in nerve membrane.”Ann. N.Y. Acad. Sci.,227, 285–293.

    Google Scholar 

  • Wright, E. B. 1958. “The effect of low temperatures on single crustacean motor nerve fibres.”J. Cell. Comp. Physiol.,51, 29–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodson, C., Wei, L.Y. Comparative evaluation of quantum theory of nerve excitation. Bltn Mathcal Biology 38, 277–293 (1976). https://doi.org/10.1007/BF02459560

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459560

Keywords

Navigation