Skip to main content
Log in

Organic matter characteristics and nutrient content in eroded soils

  • Research
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Twenty-one severely eroded soils of SE Spain (Torriorthent xeric soils) were studied. These soils form a fragile system characterized by soils with a low density of plant cover (<5%), are loamy and occur in a semiarid climate. The soils formerly were used for agricultural purposes but were abandoned at least 15 years ago. These eroded soils had a low total organic carbon content, and their humic substances, humic acid carbon, and carbohydrates were lower compared with soils that had never been cultivated (natural soils). The variables in which the effects of erosion were particularly noted were those related with the active organic matter (respiration and water-soluble organic matter). Those eroded soils with higher salt content showed lower organic matter and carbohydrate contents. Only total nitrogen was correlated with the carbon fractions in the eroded soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Albaladejo, J., and E. Díaz. 1990. Degradación y renegeración del suelo en el litoral mediterráneo español: experiencias en el proyecto Lucdeme. Pages 191-214 in J. Albaladejo, M. A. Stocking, and E. Díaz (eds.), Soil degradation and rehabilitation in Mediterranean environmental conditions. CEBAS-CSIC, Madrid.

    Google Scholar 

  • Arnold, R. W., and C. A.Jones. 1989. Soil and climate effects upon crop productivity and nutrient use. In Soil fertility and organic matter as critical components of production system. Soil Science Society of America. Special publication no. 19, 166 pp.

  • Barahona, E., and F. Santos. 1981. Un nuevo método para la determinación de densidades aparentes y del coeficiente de extensibilidad lineal (COLE) por el método de la parafina. Anales de Edafología y Agrobiologíe 40:721–725.

    Google Scholar 

  • Bolarín, M. C, M. Romero, and M. Caro. 1982. Determinación de fenoles y formas de N en aguas. Conservación de muestras y tratamiento previo. Anales de Edafología y Agrobiología 41:1–10.

    Google Scholar 

  • Brink, R. H., P. Dubar, and D. L. Linch. 1960. Measurement of carbohydrates in soil hydrolysates with anthrone. Soil Science 89:157–166.

    Article  CAS  Google Scholar 

  • Cook, B. D., and D. L. Allan. 1992. Dissolved organic carbon in old field soils: total amounts as a measure of available resources for soil mineralization. Soil Biology and Biochemistry 24:585–594.

    Article  CAS  Google Scholar 

  • Cheshire, M. V., G. P. Sparking, and C. M. Mundie. 1983. Effect of periodate treatment of soil on carbohydrate constituents and soil aggregation. Journal of Soil Science 34:105–112.

    Article  CAS  Google Scholar 

  • De Luca, T. H., and D. R. Keeney. 1993. Soluble anthrone- reactive carbon in soils: effect of carbon and nitrogen amendments. Soil Science Society of America Journal 57: 1296–1300.

    Article  Google Scholar 

  • Díaz, E. 1992. Efecto de la adieión de residues urbanos en la regeneración de suelos degradados como medio de control de la desertificación. PhD thesis. Universidad de Murcia, Facuitad de Ciencias Bioiógicas.

  • Dick, R. R. 1992. A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agricultural Ecosystems and Environment 40:25–36.

    Article  CAS  Google Scholar 

  • Durall, D. M., and D. Parkinson. 1987. Mineralization potential on surface minespoil of the labile and recalcitrant fractions of 14C-labelled timothy (Phelum pratense) litter. Soil Biology and Biochemestry 19:43–48.

    Article  CAS  Google Scholar 

  • Follett, R. H., and D. G. Westfall. 1986. A procedure for conducting fertilizer recommendation comparison studies. Journal of Agronomy 15:27–29.

    Google Scholar 

  • Fortun, A., C. Fortun, and C. Ortega. 1989. Effect of farm and manure and its humic fractions on the aggregate stability of a sandy-loam soil. Journal of Soil Science 40:293–298.

    Article  Google Scholar 

  • Francis, C. F. and J. B. Thornes. 1990. Matorral: Erosion and reclamation. In J. Albaladejo, M. A. Stocking, and E. Díaz (eds.), Soil degradation and rehabilitation in Mediterranean environmental conditions. CEBAS-CSIC, Madrid.

    Google Scholar 

  • García, C., T. Hernández, and F. Costa. 1992. Variation in some chemical parameters and organic matter in soils regenerated by the addition of municipal solid waste. Environmental Management 16:763–768.

    Article  Google Scholar 

  • García, C, T. Hernández, and F. Costa. 1994. Microbial activity in soils under Mediterranean environmental conditions. Soil Biology and Biochemistry 26:1185–1191.

    Article  Google Scholar 

  • Kniters, A. T., and W. Mulder. 1993. Water-soluble organic matter in forest soils. I. Complexing properties and implications for soil equilibria. Plant and Soil 152:215–224.

    Article  Google Scholar 

  • Larson, W. E. 1981. Protecting the soil resource base, journal of Soil and Water Conservation 36:13–16.

    Google Scholar 

  • Lax, A., E. Díaz, V. Castillo, and J. Albaladejo. 1994. Reclamation of physical and chemical properties of a salinized soil by organic amendment. Arid Soil Research and Rehabilitation 8:9–17.

    CAS  Google Scholar 

  • López Bermúdez, F., and J. Albaladejo. 1990. Factores ambientales de la degradatión del suelo en el área méditerránea In J. Albaladejo, M. A. Stocking, and E. Díaz, (eds.), Soil degradation and rehabilitation in Mediterranean environmental conditions. CEBAS-CSIC, Madrid.

    Google Scholar 

  • Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytical Chimica Acta 27:31–36.

    Article  CAS  Google Scholar 

  • Olsen, S. R., C. V. Cola, F. S. Watanabe, and L. A. Alan. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939.

  • Pal, D., and F. E. Broadbent. 1975. Influence of moisture on rice straw decomposition in soils. Soil Science Society of America Proceedings 39:59–63.

    CAS  Google Scholar 

  • Rad, J. C. 1992. Materia orgánica residual urbana: extractión y caracterización de actividades enzimáticas de interés agrotecnológico. PhD thesis. Universidad de Valladolid, Colegio Universitario de Burgos, Burgos, Spain.

    Google Scholar 

  • Soil Survey Staff. 1994. Keys to soil taxonomy. USDA. Soil Conservation Service, Washington, DC.

    Google Scholar 

  • Spanish Group of Analytical Method Standardization. 1978. Determinaciones analíticas en suelos. Normalizatión de métodos. Densidad real. Anales de Edafología y Agrobiología 37:1003–1016.

    Google Scholar 

  • Yeomans, J. C, and J. M. Bremner. 1989. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis 19:1467–1476.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, C., Hernandez, T., Barahona, A. et al. Organic matter characteristics and nutrient content in eroded soils. Environmental Management 20, 133–141 (1996). https://doi.org/10.1007/PL00006696

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00006696

Key Words

Navigation