Skip to main content
Log in

Heterogeneity of calcium compartmentation: Electron probe analysis of renal tubules

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The objective of this study has been to determine the intracellular localization of calcium in cryofixed, cryosectioned suspensions of kidney proximal tubules using quantitative electron probe X-ray microanalysis. Two populations of cells have been identified: 1) „Viable” cells, representing the majority of cells probed, are defined by their relatively normal K/Na concentration ratio of ∼4∶1. Their measured Ca content is 4.1±1.4 (sem) mmol/kg dry wt in the cytoplasm and 3.1 ± 1.1 mmol/kg dry wt in the mitochondria, or an average cell calcium content of ∼3.8 mmol/kg dry wt. 2) “Nonviable” cells, defined by the presence of dense inclusions in their mitochondria and a K/Na concentration ratio of ∼1. The Ca content is 15±2 mmol/kg dry wt in the cytoplasm and 685±139 mmol/kg dry wt in the mitochondria of such cells. Assuming 25 to 30% of the cell volume is mitochondrial, the overall calcium content of such nonviable cells is ∼ 210 mmol/kg dry wt. The presence of these inclusions in 4 to 5% of the cells would account for the average total Ca content measured in perchloric acid extracts of isolated proximal tubule suspensions (≈ 18 nmol/mg protein or 12.6 mmol/kg dry wt). Whole kidney tissues display a large variability in toal Ca content (4.5 to 18 nmol/mg protein, or 3.4 to 13.5 mmol/kg dry wt), which could be accounted for by inclusion in 0 to 4% of the cells. The electron probe X-ray microanalysis (EPXMA) data conclusively demonstrate that thein situ mitochondrial Ca content of viable cells from the kidney, proximal tubule is low and support the idea that mitochondrial Ca may regulate dehydrogenase activity but probably does not normally control cytosolic free Ca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, P.E., Lumlertgul, D., Burke, T.J., Schrier, R.W. 1985. In vitro versus in vivo mitochondrial calcium loading in ischemic acute renal failure.Am. J. Physiol. 248:F845-F850

    PubMed  Google Scholar 

  2. Balaban, R.S., Soltoff, S., Storey, J.M., Mandel, L.J. 1980. Imporved renal cortical tubule suspension. Spectrophotometric study of O2 delivery.Am. J. Physiol. 238:F50-F59

    PubMed  Google Scholar 

  3. Beck, F., Bauer, R., Bauer, U., Mason, J., Dörge, A., Rick, R., Thurau, K. 1980. Electron microprobe analysis of intracellular elements in the rat kidney.Kidney Int. 17:756–763.

    PubMed  Google Scholar 

  4. Becker, G.L., Fiskum, G., Lehninger, A.L. 1980. Regulation of free Ca2+ by liver mitochondria and endoplasmic reticulum.J. Biol. Chem. 255:9009–9012

    PubMed  Google Scholar 

  5. Bond, M., Shuman, H., Somlyo, A.P., Somlyo, A.V. 1984. Total cytoplasmic calcium in relaxed and maximally contracted rabbit portal vein smooth muscle.J. Physiol. (London) 357:185–201

    Google Scholar 

  6. Denton, R.M., McCormack, J.G. 1980. On the role of the calcium transport cycle in heart and other mamalian motochondria.FEBS Lett. 119:1–8

    Google Scholar 

  7. Hall, T. 1979. Biological x-ray microanalysis.J. Microsc. (Oxford) 117:145–163

    Google Scholar 

  8. Hansford, R.G. 1985. Relation between mitochondrial calcium transport and control of energy metabolism.Rev. Phsyiol. Biochem. Pharmacol. 102:1–72

    Google Scholar 

  9. Hansford, R.G., Castro, F. 1982. Intramitochondrial and extramitochondrial free calcium ion concentrations of suspensions of heart mitochondria with very low, plausibly physiological, contents of total calcium.J. Bioenerg. Biomembr. 14:361–376

    PubMed  Google Scholar 

  10. Harris, S.I., Balaban, R.S., Barrett, L., Mandel, L.J. 1981. Mitochondrial respiratory capacity and Na+−K+-dependent adenosine triphosphate-mediated ion transport in the intact renal cell.J. Biol. Chem. 256:10319–10328

    PubMed  Google Scholar 

  11. James-Kracke, M.R., Sloane, B.F., Shuman, H., Karp, R., Somlyo, A.P. 1980. Electron probe analysis of cultured vascular smooth muscle.J. Cell. Physiol. 103:313–322

    PubMed  Google Scholar 

  12. Joseph, S.K., Coll, K.E., Cooper, R.H., Marks, J.S., Williamson, J.R. 1983. Mechanisms underlying calcium homeostasis in isolated hepatocytes.J. Biol. Chem. 258:731–741

    PubMed  Google Scholar 

  13. Kitazawa, T., Shuman, H., Somlyo, A.P. 1983. Quantitative electron probe analysis: Problems and solutions.Ultramicroscopy 11:251–262

    Google Scholar 

  14. Kowarski, D., Shuman, H., Somlyo, A.P., Somlyo, A.V. 1985. Calcium release by noradrenaline from central sarcoplasmic reticulum in rabbit main pulmonary artery smooth muscle.J. Physiol. (London) 366:153–175

    Google Scholar 

  15. Kriz, W., Hohling, H.J., Schnermann, J., Rosensteil, A.P. von 1971. Microprobe measurements of electrolytes in kidney sections: First results.Verh. Anat. Ges. 65:217–225

    PubMed  Google Scholar 

  16. Mandel, L.J. 1982. Metabolic correlates of active transport in renal tubules.In: Functional Regulation at the Cellular and Molecular Levels. R.A. Corradino, editor. pp. 231–244. Elsevier/North-Holland, New York

    Google Scholar 

  17. Mandel, L.J., Murphy, E. 1984. Regulation of cytosolic free calcium levels in rabbit proximal kidney tubules.J. Biol. Chem. 259:11188–11196

    Google Scholar 

  18. Murphy, E., Coll, K.E., Rich, T.L., Williamson, J.R. 1980. Hormonal effects of calcium homeostasis in isolated hepatocytes.J. Biol. Chem. 255:6600–6608

    PubMed  Google Scholar 

  19. Murphy, E., Mandel, L.J. 1982. Cytosolic free calcium levels in rabbit proximal kidney tubules.Am. J. Physiol. 242:C124-C128

    PubMed  Google Scholar 

  20. Nicholls, D.G. 1978. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria.Biochem. J. 176:463–474

    PubMed  Google Scholar 

  21. Pfaller, W. 1982. Structure-function correlation on rat kidney.Adv. Anat. Embryol. Cell. Biol. 70:1–106

    PubMed  Google Scholar 

  22. Saubermann, A.J., Dobyan, D.C., Scheid, V.L., Bulger, R.L. 1986. Rat renal papilla: Comparison of two techniques for x-ray analysis.Kidney Int. 29:675–681

    PubMed  Google Scholar 

  23. Saubermann, A.J., Scheid, V.L., Dobyan, D.C., Bulger, R.L. 1986. Simultaneous comparison of techniques for x-ray analysis of proximal tubule cells.Kidney Int. 29:682–688

    PubMed  Google Scholar 

  24. Schmidt-Nielsen, B. 1976. Intracellular concentrations of the salt gland of the herring gullLarus argentatus.Am. J. Physiol. 230:514–521

    PubMed  Google Scholar 

  25. Shuman, H., Somlyo, A.V., Somlyo, A.P. 1976. Quantitative electron probe microanalysis of biological thin sections: Methods and validity.Ultramicroscopy 1:317–339

    PubMed  Google Scholar 

  26. Soltoff, S.P., Mandel, L.J. 1984. Active ion transport in the renal proximal tubule. I. Transport and metabolic studies.J. Gen. Physiol. 84:601–622

    PubMed  Google Scholar 

  27. Soltoff, S.P., Mandel, L.J. 1984. Active ion transport in the renal proximal tubule. II. Ionic dependence of the Na pump.J. Gen. Physiol. 84:623–642

    PubMed  Google Scholar 

  28. Somlyo, A.P., Bond, M., Somlyo, A.V. 1985. Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo.Nature (London) 314:622–625

    Google Scholar 

  29. Somlyo, A.P., Somlyo, A.V., Shuman, H. 1979. electron probe analysis of vascular smooth muscle: Composition of mitochondria, nuclei and cytoplasm.J. Cell. Biol. 81:316–335

    PubMed  Google Scholar 

  30. Somlyo, A.P., Somlyo, A.V., Shuman, H., Scarpa, A., Endo, M., Inesi, G. 1981. Mitochondria do not accumulate significant Ca concentrations in normal cells.In: Calcium and Phosphate Transport across Biomembranes. F. Bronner and M. Peterlik, editors. pp. 87–93 Academic, New York

    Google Scholar 

  31. Somlyo, A.P., Somlyo, A.V., Shuman, H., Sloane, B., Scarpa, A. 1978. Electron probe analysis of calcium compartments in cryosections of smooth and striated muscle.Ann. N. Y. Acad. Sci. 307:523–544

    PubMed  Google Scholar 

  32. Somlyo, A.P., Walz, B. 1985. Elemental distribution inRana pipiens retinal rods: Quantitative electron probe analysis.J. Physiol. (London) 358:183–195

    Google Scholar 

  33. Sommer, J.R., Nassar, R., Walker, S. 1983. Side bridge geometry after quick-freezing of stimulated and unstimulated frog skeletal muscle fibers.Proc. 41st Electron Microsc. Soc. Am. pp. 464–465

  34. Trump, B.F., Berezesky, I.K., Chang, S.H., Bulger, R.E. 1976. Detection of ion shifts in proximal tubule cells of the rat kidney using x-ray microanalysis.Virchows Arch. B. 22:111–120

    Google Scholar 

  35. Weinberg, J.M., Humes, H.D. 1985. Calcium transport and inner mitochondrial membrane damage in renal cortical mitochondria.Am. J. Physiol. 248:F876-F889

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeFurgey, A., Ingram, P. & Mandel, L.J. Heterogeneity of calcium compartmentation: Electron probe analysis of renal tubules. J. Membrain Biol. 94, 191–196 (1986). https://doi.org/10.1007/BF01871198

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871198

Key Words

Navigation