Skip to main content
Log in

Transport of alkali cations through thin lipid membranes by (222)C10-Cryptand, an ionizable mobile carrier

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The kinetics of K+ and Na+ transport across the membrane of large unilamellar vesicles (L.U.V.) were compared at two pH's, with two carriers: (222)C 10-cryptand (diaza-1, 10-decyl-5-hexaoxa-4,7,13,16,21,24-bicyclo[8.8.8.]hexacosane) and valinomcyin, i.e. an ionizable macrobicyclic amino polyether and a neutral macrocyclic antibiotic. The rate of cation transport by (222)C10 saturated as cation and carrier concentrations rose. The apparent affinity of (222)C10 for K+ was higher and less pH dependent than that for Na+ but resembled the affinity of valinomycin for K+. The efficiency of (222)C10 transport of K+ decreased as the pH fell and the carrier concentration rose, and was about ten times lower than that of valinomycin. Noncompetitive K+/Na+ transport selectivity of (222)C10 decreased as pH, and cation and carrier concentrations rose, and was lower than that of valinomycin. Transport of alkali cations by (222)C10 and valinomycin was noncooperative. Reaction orders in cationn(S) and carrierm(M) varied with the type of cation and carrier and were almost independent of pH;n(S) andm(M) were not respectively dependent on carrier or cation concentrations. The apparent estimated constants for cation translocation by (222)C10 were higher in the presence of Na+ than of K+ due to higher carrier saturation by K+, and decreased as pH and carrier concentration increased. Equilibrium potential was independent of the nature of carrier and transported cation. Results are discussed in terms of the structural, physicochemical and electrical characteristics of carriers and complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ascher, P., Gautheron, D., Ptak, M., Pullman, A., Schechter, E., Troyanowsky, C. 1983. Physical Chemistry of Transmembrane Ion Motions. G. Spach, editor. pp. 181–208. Elsevier, Amsterdam

    Google Scholar 

  • Allgyer, T.T., Wells, M.A. 1979. Phospholipase D from Savoy cabbage: Purification and preliminary kinetic characterization.Biochemistry 18:5348–5353

    Google Scholar 

  • Bartsch, R.A., Grandjean, J., Laszlo, P. 1983. A synthetic crown ether carboxylic acid ionophore displays synergistic transport of Pr3+ in conjunction with lasalocid.Biochem. Biophys. Res. Commun. 117:340–343

    Google Scholar 

  • Behr, J.P., Dumas, P., Moras, D. 1982. The H3O+ cation: molecular structure of an oxonium-macrocyclic polyether complex.J. Am. Chem. Soc. 104:4540–4543

    Google Scholar 

  • Behr, J.P., Kirch, M., Lehn, J.M. 1985. Carrier-mediated transport through bulk liquid membranes: dependence of transport rates and selectivity on carrier properties in a diffusion-limited process.J. Am. Chem. Soc. 107:241–246

    Google Scholar 

  • Blok, M.C., De Gier, J., Van Deenen, L.L.M. 1974. Kinetics of the valinomycin-induced potassium ion leak from liposomes with potassium thiocyanate enclosed.Biochim. Biophys. Acta 367:210–224

    Google Scholar 

  • Bogatsky, A.V., Lukyanenko, N.G., Nazarov, E.I., Tsymbal, I.P., Oleshko, A.Y., Iontov, I.A., Zakhariya, A.N., Nazarov, V.M., Frontasyeva, M.V., Peresedov, V.F. 1984. Biological activity of macroheterocycles. l. Biological activity of cryptate [222].Biol. Membr. 1:677–683

    Google Scholar 

  • Clement, D., Damm, F., Lehn, J.M. 1976. Lipophilic cryptates: salt solubilization and anion activation.Heterocycles 5:477–484

    Google Scholar 

  • Cox, B.G., Garcia-Rosas, J., Schneider, H. 1981. Solvent dependence of the kinetics of formation and dissociation of cryptates complexes.J. Am. Chem. Soc. 103:1054–1059

    Google Scholar 

  • Cox, B.G., Knop, D., Schneider, H. 1980. Thermodynamics and kinetics of alkali metal ion complexes with 5,6-benzo-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo [8.8.8] hexacosane in methanol.J. Phys. Chem. 84:320–323

    Google Scholar 

  • Dietrich, B., Lehn, J.M., Sauvage, J.P. 1973. Cryptates: Control over bivalent/monovalent cation selectivity.Chem. Commun. 1:15–16

    Google Scholar 

  • Dobler, M. 1981. Ionophores and their Structures. J. Wiley and Sons. New York

    Google Scholar 

  • Eisenman, G., Szabo, G., McLaughlin, S.G.A., Ciani, S.M. 1973. Molecular basis for the action of macrocyclic carrier on passive ionic translocation across lipid bilayer membranes.Bioenergetics 4:93–148

    Google Scholar 

  • Gambale, F., Gliozzi, A., Robello, M. 1973. Determination of rate constants in carrier-mediated diffusion through lipid bilayers.Biochim. Biophys. Acta 330:325–334

    Google Scholar 

  • Haynes, D.H., Pressman, B.C. 1974. Two-phase partition studies of alkali cation complexation by ionophores.J. Membrane Biol. 18:1–21

    Google Scholar 

  • Haynes, D.H., Wiens, T., Pressman, B.C. 1974. Turnover numbers for ionophore-catalyzed cation transport across the mitochondrial membrane.J. Membrane Biol. 18:23–38

    Google Scholar 

  • Henderson, P.J.F., McGivan, J.D., Chappell, J.B. 1969. The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes.Biochem. J. 111:521–535

    Google Scholar 

  • Ivanov, V.T., Laine, I.A., Abdulaev, N.D., Senyavina, L.B., Popov, E.M., Ovchinnikov, Y.A., Shemyakin, M.M. 1969. The physico-chemical basis of functioning of biological membranes: The conformation of valinomycin and its K+ complex in solution.Biochem. Biophys. Res. Commun. 34:803–811

    Google Scholar 

  • Kirch, M. 1980. Transport des cations alcalins par l'intermédiaire des cryptates. II: Les ligands transporteurs étudiés.In: Thèse de Doctorat ès Sciences Physiques. pp. 38–95. Strasbourg

  • Lehn, J.M. 1973. Design of organic complexing agents.Struct. Bond. 16:1–69

    Google Scholar 

  • Lehn, J.M. 1978. Cryptates: The chemistry of macropolycyclic inclusion complexes.Acc. Chem. Res. 11:49–57

    Google Scholar 

  • Lehn, J.M. 1979. Macrocyclic receptor molecules: Aspects of chemical reactivity. Investigations into molecular catalysis and transport processes.Pure Appl. Chem. 51:979–997

    Google Scholar 

  • Lehn, J.M., Montavon, F. 1978. Cryptates XXV. Stability and selectivity of cation inclusion complexes of polyaza-macrobicyclic ligands. Selective complexation of toxic heavy metal cations.Helv. Chim. Acta. 61:67–82

    Google Scholar 

  • Lehn, J.M., Sauvage, J.P. 1975. [2]-Cryptates: Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes.J. Am. Chem. Soc. 97:6700–6707

    Google Scholar 

  • Mirkhodzhaev, U.Z., Usmanov, P.B., Tashmukhamedova, A.K. 1979. Cation specificity of bilayer phospholipid membranes modified by macrocyclic polyethers.Khim. Prir. Soedin. 2:241–242

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398–404

    Google Scholar 

  • Neevel, J.G., Nolte, R.J.M. 1984. Ion transport across vesicle bilayers mediated by an artificial channel compound.Tet. Lett. 25:2263–2266

    Google Scholar 

  • Ovchinnikov, Y.A., Ivanov, V.T., Shkrob, A.M. 1974. Membrane-Active Complexones. B.B.A. Library. Vol 12, pp. 263–330. Elsevier Scientific, Amsterdam

    Google Scholar 

  • Patel, K.M., Sparrow, J.T. 1978. Rapid, large-scale purification of crude egg phospholipids using radially compressed silica gel columns.J. Chromatogr. 150:542–547

    Google Scholar 

  • Pizer, R. 1978. The dynamics of cryptand protonation.J. Am. Chem. Soc. 100:4239–4341

    Google Scholar 

  • Pressman, B.C. 1976. Biological applications of ionophores.Annu. Rev. Biochem. 45:501–530

    Google Scholar 

  • Shemyakin, M.M., Ovchinnikov, Y.A., Ivanov, V.T., Antonov, V.K., Vinogradova, E.I., Shkrob, A.M., Malenkov, G.G., Evstratov, A.V., Laine, I.A., Melnik, E.I., Ryabova, I.D. 1969. Cyclodepsipeptides as chemical tools for studying ionic transport through membranes.J. Membrane Biol. 1:402–430

    Google Scholar 

  • Shkinev, A.V., Gagel'gans, A.I., Tashmukhamedova, A.K. 1979a. Investigation of the membrane-active properties of acyl derivatives of 2,3-benzo-18-crown-6.Chem. Natl. Comp. 2:214–215

    Google Scholar 

  • Shkinev, A.V., Gagel'gans, A.I., Tashmukhamedova, A.K., Tashmukhamedov, B.A. 1979b. Ionophoric activity of acyl- and alkyl derivatives of 2,3-benzo-15-crown-5.Chem. Natl. Comp. 2:213–214

    Google Scholar 

  • Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. The rate constants of valinomycin-mediated ion transport through thin lipid membranes.Biophys. J. 11:981–994

    Google Scholar 

  • Szoka, F., Papahadjopoulos, D. 1978. Procedure for preparation of liposomes with large internal aqueous space and high capture by reversed-phase evaporation.Proc. Natl. Acad. Sci. USA 75:4194–4198

    Google Scholar 

  • Tashmukhamedov, B.A., Gagel'gans, A.I., Shkinev, A.V., Zamaraeva, M.V., Mirkhodzhaev, U.Z., Asrarov, M.I., Tashmukhamedova, A.K. 1981. 2,3,11,12-4′,4″-and 4′,5″-disec butyldibenzo-18-crown-6 ionophore for magnesium in natural and model systems.Chem. Natl. Comp. 17:189–193

    Google Scholar 

  • Tashmukhamedov, B.A., Gagel'gans, A.I., Shkinev, A.V., Zamaraeva, M.V., Usmanov, K.K., Farzalieva, S.R., Tashmukhamedova, A.K. 1979. Diacyl derivatives of dibenzo-18-crown 6 as inducers of biological membrane permeability to divalent cations.Bioorg. Khim. 5:429–437

    Google Scholar 

  • Tashmukhamedova, A.K., Stempnevskaya, I.A., Shkinev, A.V., Mirkhodgaev, Y.Z., Gagel'gans, A.I., Tashmukhamedov, B.A. 1978. Effect of macrocyclic polyethers on the properties of biological and artificial membranes.Stud. Biophys. 74:53–54

    Google Scholar 

  • Thomas, C., Sauterey, C., Castaing, M., Gary-Bobo, C.M., Lehn, J.M., Plumere, P. 1983. Cation-permeability induced by two 15-O5 macrocyclic carriers in phospholipidic large unilamellar vesicles.Biochem. Biophys. Res. Commun. 116:981–987

    Google Scholar 

  • Ueno, M., Yasui, T., Horikoshi, I. 1983. Kinetics of valinomycin- and tetranactin-mediated cation transport through liposomal membrane.Bull. Chem. Soc. Ipn. 56:1652–1656

    Google Scholar 

  • Yamaguchi, A., Anraku, Y. 1978. Mechanism of 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile-mediated proton uptake in liposomes. Kinetics of proton uptake compensated by valinomycin-induced K+-efflux.Biochim. Biophys. Acta 501:136–149

    Google Scholar 

  • Yamaguchi, A., Anraku, Y., Ikegami, S. 1978. 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile. Effects of pH on its binding to liposomes and evidence for formation of a ternary complex with valinomycin and potassium ion.Biochim. Biophys. Acta 501:150–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castaing, M., Morel, F. & Lehn, JM. Transport of alkali cations through thin lipid membranes by (222)C10-Cryptand, an ionizable mobile carrier. J. Membrain Biol. 89, 251–267 (1986). https://doi.org/10.1007/BF01870668

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870668

Key Words

Navigation