Skip to main content
Log in

Conformational states of sarcoplasmic reticulum Ca2+-ATPase as studied by proteolytic cleavage

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Conformational states in sarcoplasmic reticulum Ca2+-ATPase have been examined by tryptic and chymotryptic cleavage. High affinity Ca2+ binding (E1 state) exposes a peptide bond in the A fragment of the polypeptide chain to trypsin. Absence of Ca2+ (E2 state) exposes bonds in the B fragment, which are protected by binding of Mg2+ or ATP. After phosphorylation from ATP the tryptic cleavage pattern depends on the predominant phosphoenzyme species present. ADP-sensitive E1P and ADP-insensitive E2P have cleavage patterns identical to those of unphosphorylated E1 and E2, respectively, indicating that two major conformational states are involved in Ca2+ translocation. The transition from E1P to E2P is inhibited by secondary tryptic splits in the A fragment, suggesting that parts of this fragment are of particular importance for the energy transduction process.

The tryptic cleavage patterns of phosphorylated forms of detergent solubilized monomeric Ca2+-ATPase were similar to those of the membrane-bound enzyme, indicating that Ca2+ translocation depends mainly on structural changes within a single peptide chain. On the other hand, the protection of the second cleavage site as observed after vanadate binding to membranous Ca2+-ATPase could not be achieved in the soluble monomeric enzyme. Shielding of this peptide bond may therefore be due to protein-protein interactions in the semicrystalline state of the vanadate-bound Ca2+-ATPase in membranous form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, G., Trinnaman, B.J., Green, N.M. 1980. The primary structure of the calcium ion-transporting adenosine triphosphatase protein of rabbit skeletal sarcoplasmic reticulum.Biochem. J. 187:591–616

    PubMed  Google Scholar 

  2. Andersen, J.P., Fellmann, P., Møller, J.V., Devaux, P.F. 1981. Immobilization of a spin-labeled fatty acid chain covalently attached to Ca2+-ATPase from sarcoplasmic reticulum suggests an oligomeric structure.Biochemistry 20:4928–4936

    PubMed  Google Scholar 

  3. Andersen, J.P., Lassen, K., Møller, J.V. 1985. Changes in Ca2+ affinity related to conformational transitions in the phosphorylated state of soluble monomeric Ca2+-ATPase from sarcoplasmic reticulum.J. Biol. Chem. 260:371–380

    PubMed  Google Scholar 

  4. Andersen, J.P., Møller, J.V., Jørgensen, P.L. 1982. The functional unit of sarcoplasmic reticulum Ca2+-ATPase: Active site titration and fluorescence measurements.J. Biol. Chem. 257:8300–8307

    PubMed  Google Scholar 

  5. Andersen, J.P., Skriver, E., Mahrous, T.S., Møller, J.V. 1983. Reconstitution of sarcoplasmic reticulum Ca2+-ATPase with excess lipid: Dispersion of the pump units.Biochim. Biophys. Acta 728:1–10

    PubMed  Google Scholar 

  6. Avruch, J., Fairbanks, G. 1972. Demonstration of a phosphopeptide intermediate in the Mg2+-dependent, Na+- and K+-stimulated adenosine triphosphatase reaction of the erythrocyte membrane.Proc. Natl. Acad. Sci. USA 69:1216–1220

    PubMed  Google Scholar 

  7. Champeil, P., Bastide, F., Taupin, C., Gary-Bobo, C.M. 1976. Spin labelled sarcoplasmic reticulum vesicles: Ca2+-induced spectral changes.FEBS Lett. 63:270–272

    PubMed  Google Scholar 

  8. Champeil, P., Gingold, M.P., Guillain, F., Inesi, G. 1983. Effect of magnesium on the calcium-dependent transient kinetics of sarcoplasmic reticulum ATPase studied by stopped flow fluorescence and phosphorylation.J. Biol. Chem. 258:4453–4458

    PubMed  Google Scholar 

  9. Coan, C., Verjovski-Almeida, S., Inesi, G. 1979. Ca2+ regulation of conformational states in the transport cycle of spin-labelled sarcoplasmic reticulum ATPase.J. Biol. Chem. 254:2968–2974

    PubMed  Google Scholar 

  10. De Meis, L. 1981. The Sarcoplasmic Reticulum. John Wiley & Sons, New York

    Google Scholar 

  11. Dupont, Y. 1976. Fluorescence studies of the sarcoplasmic reticulum calcium pump.Biochem. Biophys. Res. Commun. 71:544–550

    PubMed  Google Scholar 

  12. Dupont, Y. 1980. Occlusion of divalent cations in the phosphorylated calcium pump of sarcoplasmic reticulum.Eur. J. Biochem. 109:231–238

    PubMed  Google Scholar 

  13. Dupont, Y., Bennett, N., Lacapere, J. 1982. ATP-induced conformational transitions of the Ca2+-ATPase of sarcoplasmic reticulum.Ann. N.Y. Acad. Sci. 402:569–572

    PubMed  Google Scholar 

  14. Dupont, Y., Pougeois, R. 1983. Evaluation of H2O activity in the free or phosphorylated catalytic site of Ca2+-ATPase.FEBS Lett. 156:93–98

    PubMed  Google Scholar 

  15. Dux, L., Martonosi, A. 1983. Ca2+-ATPase crystals in sarcoplasmic reticulum: The effect of trypsin digestion.J. Biol. Chem. 258:10111–10115

    PubMed  Google Scholar 

  16. Green, N.M., Allen, G., Hebdon, G.M. 1980. Structural relationship between the calcium- and magnesium-transporting ATPase of sarcoplasmic reticulum and the membrane.Ann. N.Y. Acad. Sci. 358:149–158

    PubMed  Google Scholar 

  17. Guillain, F., Champeil, P., Lacapere, J., Gingold, M.P. 1981. Stopped flow and rapid quenching measurement of the transient steps induced by calcium binding to sarcoplasmic reticulum adenosine triphosphatase.J. Biol. Chem. 256:6140–6147

    PubMed  Google Scholar 

  18. Guillain, F., Gingold, M.P., Büschlen, S., Champeil, P. 1980. A direct fluorescence study of the transient steps induced by calcium binding to sarcoplasmic reticulum ATPase.J. Biol. Chem. 255:2072–2076

    PubMed  Google Scholar 

  19. Hymel, L., Maurer, A., Berenski, C., Jung, C.Y., Fleischer, S. 1984. Target size of calcium pump protein from skeletal muscle sarcoplasmic reticulum.J. Biol. Chem. 259:4890–4895

    PubMed  Google Scholar 

  20. Ikemoto, N., Sreter, F.A., Gergely, J. 1971. Structural features of the vesicles of FSR: Lack of functional role in Ca2+-uptake and ATPase activity.Arch. Biochem. Biophys. 147:571–582

    PubMed  Google Scholar 

  21. Imamura, Y., Saito, K., Kawakita, M. 1984. Conformational change of Ca2+, Mg2+-adenosine triphosphatase of sarcoplasmic reticulum upon binding of Ca2+ and adenyl-5′-ylimidodiphosphate as detected by trypsin sensitivity analysis.J. Biochem. 95:1305–1313

    PubMed  Google Scholar 

  22. Inesi, G., Scales, D. 1974. Tryptic cleavage of sarcoplasmic reticulum protein.Biochemistry 13:3298–3306

    PubMed  Google Scholar 

  23. Jørgensen, P.L. 1983. Mechanism of the Na+, K+ Pump. Protein structure and conformations of the pure (Na++K+)-ATPase.Biochim. Biophys. Acta 694:27–68

    Google Scholar 

  24. Jørgensen, P.L., Petersen, J. 1975. Purification and characterization of (Na+, K+)-ATPase: V. Conformational changes in the enzyme. Transitions between the Na-form and the K-form studied with tryptic digestion as a tool.Biochim. Biophys. Acta 401:399–415

    PubMed  Google Scholar 

  25. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685

    Google Scholar 

  26. Lüdi, J., Hasselbach, W. 1984. Separation of the tryptic fragments of sarcoplasmic reticulum ATPase with high performance liquid chromatography. Identification of the calcium binding site.FEBS Lett. 167:33–36

    PubMed  Google Scholar 

  27. MacLennan, D.H., Reithmeier, A.F. 1982. The structure of the Ca2+/Mg2+-ATPase of sarcoplasmic reticulum.In: Membranes and Transport. A.N. Martonosi, editor. pp. 567–571. Plenum, New York

    Google Scholar 

  28. Marcsek, Z., Nelson, R., Ikemoto, N. 1983. Bivalent cation dependent conformational changes of the sarcoplasmic reticulum Ca2+-ATPase modify the second tryptic cleavage site. Abstracts of the 15th FEBS Meeting, Brussels 1983

  29. Martin, D.W., Tanford, C., Reynolds, J.A. 1984. Monomeric solubilized sarcoplasmic reticulum Ca pump protein: Demonstration of Ca binding and dissociation coupled to ATP hydrolysis.Proc. Natl. Acad. Sci. USA 81:6623–6626

    PubMed  Google Scholar 

  30. Martonosi, A.N., Beeler, T.J. 1983. Mechanism of Ca2+-transport by sarcoplasmic reticulum.In: Handbook of Physiology. Section 10: Skeletal Muscle. pp. 417–485. American Physiological Society, Bethesda

    Google Scholar 

  31. Migala, A., Agostini, B., Hasselbach, W. 1973. Tryptic fragmentation of the calcium transport system in the sarcoplasmic reticulum.Z. Naturforsch. 28c:178–182

    Google Scholar 

  32. Møller, J.V., Andersen, J.P., Maire, M. le 1982. The sarcoplasmic reticulum Ca2+-ATPase.Mol. Cell. Biochem. 42:83–107

    PubMed  Google Scholar 

  33. Møller, J.V., Lind, K.E., Andersen, J.P. 1980. Enzyme kinetics and substrate stabilization of detergent-solubilized and membraneous (Ca2++Mg2+)-activated ATPase from sarcoplasmic reticulum.J. Biol. Chem. 255:1912–1920

    PubMed  Google Scholar 

  34. Murphy, A.J. 1976.Sulfhydryl group modification of sarcoplasmic reticulum membranes.Biochemistry 15:4492–4496

    PubMed  Google Scholar 

  35. Pick, U., Karlish, S.J.D. 1982. Regulation of the conformational transition in the Ca-ATPase from sarcoplasmic reticulum by pH, temperature and calcium ions.J. Biol. Chem. 257:6120–6126

    PubMed  Google Scholar 

  36. Pick, U., Racker, E. 1979. Inhibition of the Ca2+-ATPase from sarcoplasmic reticulum by dicyclohexylcarbodiimide: Evidence for location of the Ca2-binding site in a hydrophobic region.Biochemistry 18:108–113

    PubMed  Google Scholar 

  37. Pickart, C.M., Jencks, W.P. 1984. Energetics of the calcium-transporting ATPase.J. Biol. Chem. 259:1629–1643

    PubMed  Google Scholar 

  38. Poduslo, J.F., Rodbard, D. 1980. Molecular weight estimation using sodium dodecyl sulfate-pore gradient electrophoresis.Anal. Biochem. 101:394–406

    PubMed  Google Scholar 

  39. Scott, T.L., Shamoo, A.E. 1984. Distinction of the roles of the two high-affinity calcium sites in the functional activities of the Ca2+-ATPase of sarcoplasmic reticulum,Eur. J. Biochem. 143:427–436

    PubMed  Google Scholar 

  40. Stewart, P.S., MacLennan, D.H. 1974. Surface particles of sarcoplasmic reticulum membranes: Structural features of the adenosine triphosphatase,J. Biol. Chem. 249:985–993

    PubMed  Google Scholar 

  41. Takisawa, H., Makinose, M. 1983. Occlusion of calcium in the ADP-sensitive phosphoenzyme of the adenosine triphosphatase of sarcoplasmic reticulum,J. Biol. Chem. 258:2986–2992

    PubMed  Google Scholar 

  42. Tanford, C. 1984. Twenty questions concerning the reaction cycle of the sarcoplasmic reticulum calcium pump.CRC Crit. Rev. Biochem. 17:123–151

    PubMed  Google Scholar 

  43. Taylor, K., Dux, L., Martonosi, A. 1984. Structure of the vanadate-induced crystals of sarcoplasmic reticulum Ca2+-ATPase.J. Mol. Biol. 174:193–204

    Google Scholar 

  44. Thorley-Lawson, D.A., Green, N.M. 1973. Studies on the location and orientation of proteins in the sarcoplasmic reticulum.Eur. J. Biochem. 40:403–413

    PubMed  Google Scholar 

  45. Vianna, A.L. 1975. Interaction of calcium and magnesium in activating and inhibiting the nucleoside triphosphatase of sarcoplasmic reticulum vesicles.Biochim. Biophys. Acta 410:389–406

    Google Scholar 

  46. Yamada, S., Ikemoto, N. 1978. Distinction of thiols involved in the specific reaction steps of the Ca2+-ATPase of the sarcoplasmic reticulum.J. Biol. Chem. 253:6801–6807

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, J.P., Jørgensen, P.L. Conformational states of sarcoplasmic reticulum Ca2+-ATPase as studied by proteolytic cleavage. J. Membrain Biol. 88, 187–198 (1985). https://doi.org/10.1007/BF01868432

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868432

Key words

Navigation