Skip to main content
Log in

Electric pulse-induced fusion of mouse lymphoma cells: Roles of divalent cations and membrane lipid domains

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Mouse leukemic lymphoblasts (L5178Y) brought into close contact by dielectrophoresis underwent cell fusion following the application of electrical pulses in the presence of electrolytes. The electrically fused cells became spherical after switching off the dielectrophoretic field. Fusion between a cell vitally stained with Janus Green and that with Neutral Red resulted in the homokaryon with a mixed color. Intracellular potentials simultaneously recorded from the two cells located on both sides of the homokaryon were identical. The fusion efficiency was remarkably dependent upon temperature, displaying a discontinuity at about 11°C in the Arrhenius plot. The extracellular application of phospholipase-A2 or-C suppressed the fusion yield. Thus, it appears that the phospholipid domains play a crucial role in the electric pulse-induced cell fusion. Treatment of the cells with proteolytic enzymes markedly enhanced the fusion yield, presumably due to removing the glycocalix and/or giving rise to fusion-potent, protein-free lipid domains. The presence of millimolar concentrations of divalent cations (irrespective of Mg2+ or Ca2+) as well as of micromolar concentrations of Ca2+ (but not Mg2+) was prerequisite to the resealing of membranes suffered from electrical breakdown upon exposure to electric pulses. In addition, extracellular Ca2+ (but not Mg2+) ions at more than micromolar concentrations were indispensable for the cell fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asano, A., Ohki, K., Sekiguchi, K., Nakama, S., Tanabe, M., Okada, Y. 1974. Biochemical studies on regulatory mechanisms of cell fusion.Symp. Cell Chem. 26:39–45 (in Japanese)

    Google Scholar 

  • Bar-Sagi, D., Prives, J. 1983. Trifluoperazine, a calmodulin antagonist, inhibits muscle cell fusion.J. Cell Biol. 97:1375–1380

    Google Scholar 

  • Bates, G.W., Gaynor, J.J., Shekhawat, N.S. 1983. Fusion of plant protoplasts by electric fields.Plant Physiol. 72:1110–1113

    Google Scholar 

  • Bischoff, R., Eisert, S.M., Schedle, I., Vienken, J., Zimmermann, U. 1982. Human hybridoma cells produced by electrofusion.FEBS Lett. 147:64–68

    Google Scholar 

  • Burgoyne, R.D., Geisow, M.J., Barron, J. 1982. Dissection of stages in exocytosis in the adrenal chromaffin cell with use of trifluoperazine.Proc. R. Soc. London B 216:111–115

    Google Scholar 

  • Chapel, M., Teissie, J., Alibert, G. 1984. Electrofusion of spermine-treated plant protoplasts.FEBS Lett. 173:331–336

    Google Scholar 

  • David, J.D., Higginbotham, C.-A. 1981. Fusion of chick embryo skeletal myoblasts: Interactions of prostaglandin E1, adenosin 3′:5′ monophosphate, and calcium influx.Dev. Biol. 82:308–316

    Google Scholar 

  • De Lorenzo, R.J., Freedman, S.D., Yohe, W.B., Maurer, S.C. 1979. Stimulation of Ca2+-dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles.Proc. Natl. Acad. Sci. USA 76:1838–1842

    Google Scholar 

  • Douglas, W.W., Nemeth, E.F. 1982. On the calcium receptor activating exocytosis: Inhibitory effects of calmodulin-interacting drugs on rat mast cells.J. Physiol. (London) 323:229–244

    Google Scholar 

  • Ekerdt, R., Dahl, G., Gratzl, M. 1981. Membrane fusion of secretory vesicles and liposomes. Two different types of fusion.Biochim. Biophys. Acta 646:10–22

    Google Scholar 

  • Finaz, C., Lefevre, A., Teissie, J. 1984. Electrofusion. A new, highly efficient technique for generating somatic cell hybrids.Exp. Cell Res. 150:477–482

    Google Scholar 

  • Gratzl, M., Dahl, G. 1978. Fusion of secretory vesicles isolated from rat liver.J. Membrane Biol. 40:343–364

    Google Scholar 

  • Gratzl, M., Dahl, G., Russel, J.T., Thorn, N.A. 1977. Fusion of neurohypophyseal membranes in vitro.Biochim. Biophys. Acta 470:45–57

    Google Scholar 

  • Halfmann, H.J., Emeis, C.C., Zimmermann, U. 1983. Electrofusion and genetic analysis of fusion products of haploid and polyploidSaccharamyces yeast cells.FEMS Microbiol. Lett. 20:13–16

    Google Scholar 

  • Hartmann, J.X., Galla, J.D., Emma, D.A., Kao, K.N., Gamborg, O.L. 1976. The fusion of erythrocytes by treatment with proteolytic enzymes and polyethylene glycol.Can. J. Genet. Cytol. 18:503–512

    Google Scholar 

  • Haywood, A.M., Boyer, B.P. 1982. Sendai virus membrane fusion: Time course and effect of temperature, pH, calcium and receptor concentration.Biochemistry 21:6041–6046

    Google Scholar 

  • Israel, S., Ginsberg, D., Lastor, Y., Zakai, N., Milner, Y., Loyter, A. 1983. A possible involvement of virus associated protease in the fusion of Sendai virus envelopes with human erythrocytes.Biochim. Biophys. Acta 732:337–346

    Google Scholar 

  • Knight, D.E., Baker, P.F. 1982. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields.J. Membrane Biol. 68:107–140

    Google Scholar 

  • Lagunoff, D., Wan, H. 1974. Temperature dependence of mast cell histamine secretion.J. Cell Biol. 61:809–811

    Google Scholar 

  • Lo, M.M.S., Tsong, T.Y., Conrad, M.K., Strittmatter, S.M., Hester, L.D., Snyder, S.H. 1984. Monoclonal antibody production by receptor-mediated electrically induced cell fusion.Nature (London) 310:792–794

    Google Scholar 

  • Lucy, J.A. 1978. Mechanisms of chemically induced cell fusion.In: Membrane Fusion. G. Poste and G.L. Nicolson, editors. pp. 267–304. North-Holland, Amsterdam

    Google Scholar 

  • McLaughlin, S.G.A., Szabo, G., Eisenman, G. 1971. Divalent ions and surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667–687

    Google Scholar 

  • Neumann, E., Gerisch, G., Opatz, K. 1980. Cell fusion induced by high electric impulses applied toDictyostelium.Naturwissenschaften 67:S414-S415

    Google Scholar 

  • Oehme, M., Kessler, M., Simon, W. 1976. Neutral carrier Ca2+-microelectrode.Chimia 30:204–206

    Google Scholar 

  • Ohno-Shosaku, T., Hama-Inaba, H., Okada, Y. 1984. Somatic hybridization between human and mouse lymphoblast cells produced by an electric pulse-induced fusion technique.Cell Struct. Funct. 9:193–196

    Google Scholar 

  • Ohno-Shosaku, T., Okada, Y. 1984. Facilitation of electrofusion of mouse lymphoma cells by the proteolytic action of proteases.Biochem. Biophys. Res. Commun. 120:138–143

    Google Scholar 

  • Okada, Y. 1969. Factors in fusion of cells by HVJ.Curr. Top. Microbiol. Immunol. 48:102–128

    Google Scholar 

  • Okada, Y., Doida, Y., Roy, G., Tsuchiya, W., Inouye, K., Inouye, A. 1977. Oscillations of membrane potential in L cells: I. Basic characteristics.J. Membrane Biol. 35:319–335

    Google Scholar 

  • Okada, Y., Ohno-Shosaku, T., Oiki, S. 1984. Ca2+ is prerequisite for cell fusion induced by electric pulses.Biomed. Res. 5:511–516

    Google Scholar 

  • Pilwat, G., Richter, H.-P., Zimmermann, U. 1981. Giant culture cells by electric field-induced fusion.FEBS Lett. 133:169–174

    Google Scholar 

  • Pohl, H.A. 1978. Dielectrophoresis. Cambridge University Press, Cambridge

    Google Scholar 

  • Poste, G., Pasternak, C.A. 1978. Virus-induced cell fusion.In: Membrane Fusion. G. Poste and G.L. Nicolson, editors. pp. 305–367. North-Holland, Amsterdam

    Google Scholar 

  • Richter, H.-P., Scheurich, P., Zimmermann, U. 1981. Electric field-induced fusion of sea urchin eggs.Dev. Growth Differ. 23:479–486

    Google Scholar 

  • Scheurich, P., Zimmermann, U. 1981. Giant human erythrocytes by electric-field-induced cell-to-cell fusion.Naturwissenschaften 68:45–47

    Google Scholar 

  • Senda, M., Morikawa, H., Takeda, J. 1982. Fusion of protoplasts and cell membrane.Biophysics (Kyoto) 22:198–205 (in Japanese)

    Google Scholar 

  • Senda, M., Takeda, J., Abe, S., Nakamura, T. 1979. Induction of cell fusion of plant protoplasts by electrical stimulation.Plant. Cell Physiol. 20:1441–1443

    Google Scholar 

  • Teissie, J., Knutson, V.P., Tsong, T.Y., Lane, M.D. 1982. Electric pulse-induced fusion of 3T3 cells in monolayer culture.Science 216:537–538

    Google Scholar 

  • Ueda, S., Oiki, S., Okada, Y. 1983. Cyclic changes in cytoplasmic free Ca2+ during membrane potential oscillations in fibroblasts.Biomed. Res. 4:231–234

    Google Scholar 

  • Verhoek-Köhler, B., Hampp, R., Ziegler, H., Zimmermann, U. 1983. Electro-fusion of mesophyll protoplasts ofAvena sativa. Determination of the cellular adenylate-level of hybrids and its influence on the fusion process.Planta 158:199–204

    Google Scholar 

  • Vienken, J., Zimmermann, U. 1982. Electric field-induced fusion: Electrohydraulic procedure for production of heterokaryon cells in high yield.FEBS Lett. 137:11–13

    Google Scholar 

  • Vienken, J., Zimmermann, U., Fouchard, M., Zagury, D. 1983. Electrofusion of myeloma cells on the single cell level. Fusion under sterile conditions without proteolytic enzyme treatment.FEBS Lett. 163:54–56

    Google Scholar 

  • Zimmermann, U. 1982. Electric field-mediated fusion and related electrical phenomena.Biochim. Biophys. Acta 694:227–277

    Google Scholar 

  • Zimmermann, U., Pilwat, G. 1978. The relevance of electric field induced changes in the membrane structure to basic membrane research and clinical therapeutics and diagnosis.VI Int. Biophys. Congr. Abstr. p. 140. (Kyoto)

  • Zimmermann, U., Pilwat, G., Pohl, H.A. 1982. Electric field-mediated cell fusion.J. Biol. Phys. 10:43–50

    Google Scholar 

  • Zimmermann, U., Pilwat, G., Richter, H.-P. 1981a. Electric-field-stimulated fusion: Increased field stability of cells induced by pronase.Naturwissenschaften 68:577–579

    Google Scholar 

  • Zimmermann, U., Scheurich, P. 1981. High frequency fusion of plant protoplasts by electric fields.Planta 151:26–32

    Google Scholar 

  • Zimmermann, U., Scheurich, P., Pilwat, G., Benz, R. 1981b. Cells with manipulated functions: New perspectives for cell biology, medicine, and technology.Angew. Chem. Int. Ed. Engl. 20:325–344

    Google Scholar 

  • Zimmermann, U., Vienken, J. 1982. Electric field induced cell-to-cell fusion.J. Membrane Biol. 67:165–182

    Google Scholar 

  • Zimmermann, U., Vienken, J. 1984. Electric field-mediated cell-to-cell fusion.In: Cell Fusion: Gene Transfer and Transformation. R.F. Beers, Jr. and E.G. Bassett, editors. pp. 171–187. Raven, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno-Shosaku, T., Okada, Y. Electric pulse-induced fusion of mouse lymphoma cells: Roles of divalent cations and membrane lipid domains. J. Membrain Biol. 85, 269–280 (1985). https://doi.org/10.1007/BF01871522

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871522

Key Words

Navigation