Skip to main content

Advertisement

Log in

Studies on fluorapatite

1. Chemical characterization and exchange properties

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

A mineral specimen from Burgess, Canada, proved upon chemical and crystallographic analyses to be an exceptionally pure sample of fluorapatite. The over-all composition corresponds to

$$(Ca^{2 + } )_{9.98} (Sr^{2 + } ,Na^ + ,K^ + ,Mg^{2 + } )_{0.02} (PO_4^{3 - } )_{5.98} (HCO_3^ - ,CO_3^{2 - } )_{0.02} (F^ - )_2 $$

. The crystallographic c-axis was determined to be 6.865 Å, and the a-axis 9.374 A. Exchange data obtained by employing45Ca,32P, and18F indicate the presence of large crystallites with a specific surface of the order of 1 m2/g. It is indicated that the physical interpretation of the exchange process does not require the existence of separate departments, each with its own kinetic factor, but that the exchange may be simply related to the exponential change in the free energy of the reaction. For the reaction

$$(Ca)_5 (PO_4 )_3 OH_{solid} + (F^ - ) \rightleftarrows (Ca)_5 (PO_4 )_3 F_{solid} + (OH^ - )$$

the thermodynamic constant has been calculated to be 101.26, implying that fluorapatite always will form at the expense of hydroxyapatite under physiologic conditions. This transformation will be furthered by lowering the pH.

Résumé

Un échantillon minéral provenant de Burgess, Canada s'est révélé être un speciment exceptionnellement pur de fluoroapatite après analyse chimique et cristallographique. La composition globale de cet échantillon est la suivante:

$$(Ca^2 )9.98(Sr^{2 + } ,Na^ + ,K^ + ,Mg^{2 + } )0.02(PO_4^{3 - } )5.98(HCO_3^ - ,CO_3^{2 - } )0.02(F^ - )2$$

. L'axe cristallographique C est de 6.865 A et l'axe a de 9.374 A. Des expériences d'échanges réalisés à l'aide de45Ca,32P et18F indiquent la présence de gros cristallites de surface spécifique de l'ordre de 1 m2/g. Il apparait que l'interprétation physique des processus d'échange ne nécessite pas l'existence de compartiments séparés, avec chacun son propre facteur cinétique, les échanges semblent être simplement liés à un changement exponentiel dans l'énergie libre de la réaction. Pour la réaction suivante:

$$(Ca)_5 (PO_4 )_3 OH solide + (F^ - ) \rightleftarrows (Ca)_5 (PO_4 )_3 F solide + (OH^ - )$$

, la constante thermodynamique de 101.26 a été calculée, suggérant que le fluorapatite se forme toujours aux dépens de l'hydroxyapatite dans des conditions physiologiques. Cette transformation se continue en abaissant le pH.

Zusammenfassung

Eine Mineralprobe aus Burgess, Kanada, erwies sich nach chemischer und kristallographischer Analyse als außergewöhnlich reines Fluorapatit. Die Gesamtzusammensetzung entspricht:

$$(Ca^{2 + } )_{9,98} (Sr^{2 + } ,Na^ + ,K^ + ,Mg^{2 + } )_{0,02} (PO_4^{3 - } )_{5,98} (HCO_3^ - ,CO_3^{2 - } )_{0,02} (F^ - )_2 $$

. Die kristallographische c-Achse wurde bestimmt und ergab 6,865 Å, und die a-Achse ergab 9,374 Å. Austauschwerte, welche durch Anwendung von45Ca,32P und18F erhalten wurden, deuteten auf große Kristalliten mit einer spezifischen Oberfläche von ca. 1 m2/g. Die Befunde deuten darauf hin, daß für die physikalische Erklärung des Austauschvorganges keine separaten Kompartimente mit eigenen kinetischen Faktoren nötig sind, sondern daß der Austausch mit dem exponentiellen Wechsel in der freien Energie der Reaktion in einfacher Beziehung steht. Für die Reaktion

$$(Ca)_5 (PO_4 )_3 OH_{in fester Form} + (F^ - ) \rightleftarrows (Ca)_5 (PO_4 )_3 F_{in fester Form} + (OH^ - )$$

wurde als thermodynamische Konstante 101,26 errechnet, was darauf deutet, daß unter physiologischen Bedingungen immer Fluorapatit auf Kosten von Hydroxyapatit entsteht. Diese Umwandlung wird erhöht, wenn das pH erniedrigt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Armstrong W. D., Singer, L.: Composition and constitution of the mineral phase of bone. Clin. Orthop.38, 179–190 (1965)

    PubMed  Google Scholar 

  • Collin, R. L.: Strontium-calcium hydroxyapatite solid solutions: preparation and lattice constant measurements. J. Amer. chem. Soc.81, 5275–5278 (1959)

    Google Scholar 

  • Collin, R. L.: Strontium-calcium hydroxyapatite solid solutions precipitated from basic, aqueous solutions. J. Amer. chem. Soc.82, 5067–5069 (1960)

    Google Scholar 

  • Costeas, A., Woodard, H. Q., Laughlin, J. S.: Comparative kinetics of calcium and fluoride in rabbit bone. Radiot. Res.46, 317–333 (1971)

    Google Scholar 

  • Duff, E. J.: Orthophosphates. Part II. The transformation brushite-fluoroapatite and monetite-fluoroapatite in aqueous potassium fluoride solution. J. chem. Soc. (Lond.), Section A, 33–38 (1971)

  • Egan, E. P., Wakefield, Z. T., Elmore, K. L.: Low-temperature heat capacity and entropy of hydroxyapatite. J. Amer. chem. Soc.73, 5579–5580 (1951a)

    Google Scholar 

  • Egan, E. P., Wakefield, Z. T., Elmore, K. L.: Thermodynamic properties of fluorapatite, 15 to 1600°K. J. Amer. chem. Soc.73, 5581–5582 (1951 b)

    Google Scholar 

  • Falkenheim, M., Neuman, W. F., Hodge, H. C.: Phosphate exchange as the mechanism for adsorption of the radioactive isotope by the calcified tissues. J. biol. Chem.169, 713–722 (1947)

    Google Scholar 

  • Farr, T. D., Elmore, K. L.: System CaO−P2O5−HF−H2O: thermodynamic properties. J. phys. Chem.66, 315–318 (1962)

    Google Scholar 

  • Farr, T. D., Tarbutton, G., Lewis, H. T.: System CaO−P2O5−HF−H2O: equlibrium at 25 and 50. J. phys. Chem.66, 318–321 (1962)

    Google Scholar 

  • Fiske, C. H., Subbarow, Y.: The colorimetric determination of phosphorus. J. biol. Chem.66, 375–400 (1925)

    Google Scholar 

  • Gottschal, A. J.: Heats of formation of hydroxy-, fluor-, and chlorapatites. J. S. Afr. chem. Inst.11, 45–52 (1958)

    Google Scholar 

  • Gulbrandsen, R. A.: Physical and chemical factors in the formation of marine apatite. Econ. Geol.64, 365–382 (1969)

    Google Scholar 

  • Hagen, A. R.: Dental enamel in inorganic salt solutions. Oslo, Norway: Universitetsforlaget 1965

    Google Scholar 

  • Hagen, A. R.: The state of fluorine in dentifrice systems. Acta odont. scand.30, 167–186 (1972)

    PubMed  Google Scholar 

  • Hodge, H. C.: The role of exchange in calcium and phosphate adsorption by the calcified tissues. In: Metabolic interrelations. Trans 1. Conf. Josiah Macy, Jr. Foundation (1949)

  • Hodge, H. C., Koss, W. F., Ginn, J. T., Falkenheim, F., Gavett, E., Fowler, R. C., Thomas, I., Bonner, J. F., Dessauer, G.: The nature of the insoluble sodium of bone. The adsorption of sodium at forty degrees by bone, dentin, enamel, and hydroxyapatite as shown by the radioactive isotope. J. biol. Chem.148, 321–331 (1943)

    Google Scholar 

  • Holmes, J. M., Davies, D. H., Meath, W. J., Beebe, R. A.: Gas adsorption and surface structure of bone mineral. Biochemistry3, 2019–2024 (1964)

    Google Scholar 

  • Ingram, G. S.: Some heteroanionic exchange reactions of hydroxyapatite. Bull. Soc. chim. Fr. Pt.II, 1841–1844 (1968)

    Google Scholar 

  • Jacques, J. K.: The heats of formation of fluorapatite and hydroxyapatite. J. chem. Soc. (Lond.), 3820–3822 (1963)

  • Lagergren, C., Carlström, D.: Crystallographic studies of calcium and strontium hydroxyapatites. Acta chem. scand.11, 545–550 (1957)

    Google Scholar 

  • Legeros, R. Z., Trautz, O. R., Legeros, J. P., Klein, E.: Carbonate substitution in the apatite structure. Bull. Soc. chim. Fr. Pt.II, 1712–1717 (1968)

    Google Scholar 

  • Martens, C. S., Harriss, G. C.: Inhibition of apatite precipitation in the marine environment by magnesium ions. Geochim. Cosmochim. Acta34, 621–625 (1970)

    Google Scholar 

  • McCann, H. C., Fath, E. H.: Phosphate exchange in hydroxyapatite, enamel, dentin, and bone. I. Mechanism of exchange. J. biol. Chem.231, 863–872 (1958)

    PubMed  Google Scholar 

  • Megirian, D.: The deposition of fluoride in glycol-ashed bone. Atomic Energy Project UR-128. The University of Rochester, 1951

  • Mooney, R. W., Aia, M. A.: Alkaline earth phosphates. Chem. Rev.61, 433–462 (1961)

    Google Scholar 

  • Neuman, W. F.: Bone as a problem in surface chemistry. In Metabolic interrelations. Trans. 2. Conf. Josiah Macy, Jr. Foundation. 1950

  • Neuman, W. F., Neuman, M. W.: The nature of the mineral phase of bone. Chem. Rev.53, 1–45 (1953)

    Google Scholar 

  • Neuman, W. F., Neuman, M. W., Main, E. R., Mulryan, B. C.: The deposition of uranium in bone. IV. Adsorption studies in vitro. J. biol. Chem.179, 325–333 (1949)

    Google Scholar 

  • Neuman, W. F., Neuman, M. W., Main, E. R., Leary, J. O., Smith, F. A.: The surface chemistry of bone. II. Fluoride deposition. J. biol. Chem.187, 655–661 (1950)

    PubMed  Google Scholar 

  • Pak, C. Y. C., Bartter, F. C.: Ionic interaction with bone mineral. I. Evidence for an isoionic calcium exchange with hydroxyapatite. Biochim. biophys. Acta (Amst.)141, 401–409 (1967)

    Google Scholar 

  • Philipson, T.: On the constitution of apatite minerals. Lantbrukshögskolans annaler29, 267–293 (1963)

    Google Scholar 

  • Posner, A. S., Perloff, A., Diorio, A. F.: Refinement of the hydroxyapatite structure. Acta cryst.11, 308–309 (1958)

    Google Scholar 

  • Prener, J. S.: The growth and crystallographic properties of calcium fluor-and chlorapatite crystals. J. electrochem. Soc.114, 77–83 (1967)

    Google Scholar 

  • Singer, L., Armstrong, W. D.: Determination of fluoride in blood serum. Analyt. Chem.31, 105–109 (1959)

    Google Scholar 

  • Singer, L., Armstrong, W. D.: Modified diffusion method for analysis of fluoride. J. dent. Res.41, 910 (1962)

    PubMed  Google Scholar 

  • Singer, L., Armstrong, W. D., Colman, L. M.: Microdetermination of calcium in biological materials. Analyt. Biochem.9, 217–223 (1964)

    Google Scholar 

  • Smirnova, Z. G., Illarionov V. V., Vol'fkovich, S. I.: Heats of formation of fluorapatite, hydroxyapatite, and tricalcium phosphates (α and β modifications). Russ. J. inorg. Chem.7, 920–922 (1962)

    Google Scholar 

  • Trautz, O. R.: X-ray diffraction of biological and synthetic apatites. Ann. N. Y. Acad. Sci.60, 696–712 (1958)

    Google Scholar 

  • Valyashko, V. M., Kogarko, L. N., Khodakovskiy, I. L.: Stability of fluorapatite, chlorapatite and hydroxyapatite in aqueous solutions at different temperatures. Geochem. Intern.5, 21–30 (1968)

    Google Scholar 

  • West, E. S., Christensen, B. E., Rivehart, R. E.: A micro-method for the determination of CO2 in blood and other fluids. J. biol. Chem.132, 681–686 (1940)

    Google Scholar 

  • Young, R. A., Elliot, J. C.: Atomic-scale bases for several properties of apatites. Arch. oral Biol.11, 699–707 (1966)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagen, A.R. Studies on fluorapatite. Calc. Tis Res. 13, 259–270 (1973). https://doi.org/10.1007/BF02015416

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02015416

Key words

Navigation