Skip to main content

Advertisement

Log in

Osteocyte types in the developing mouse calvarium

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

Tissue maps, and cell characteristics and properties were recorded in a study under the optical microscope of the development of the mouse calvarium from pre-natal to 26 days. Osteocyte populations in left and right halves of the calvarium were similar, but decreased with time for a given volume. Small isolated areas of bone matrix stained for phosphate (or carbonate) in a more readily available form from that in the surrounding matrix, which could be stained after sectioning but failed to stain in bulk. Osteocyte types were defined on the basis of histochemical methods for calcium and phosphate, which were associated inside bone cells in a complex manner, varying with time and position. The calcium and phosphate were not always present within the cell in discrete regions and were not always present in the same place in a given cell type. On the basis of a study of changes in cell types with time in selected sites a sequence of “loading” and “unloading” is proposed.

Résumé

Des cartes tissulaires ainsi que les caractéristiques et propriétés cellularires ont été relevées au cours d'une étude de microscopie optique du développement de la calotte cranienne de souris, avant la naissance, jusqu'au 26ème jour. Les population d'ostéocytes de moitiés droite et gauche de ces calottes sont semblables, mais décroissent avec le temps dans un volume donné. De petites plages limitées de matrice osseuse se colorent pour le phosphate (ou carbonate) de façon plus nette que la matrice environnante, qui se colore légèrement après coupe. Les divers types ostéocytaires se distinguent par les réactions histochimiques du calcium et du phosphate, qui sont associés dans les cellules osseuses de façon complexe, variant dans le temps et la localisation. Ces deux constituants ne sont pas toujours présent dans les cellules des diverses régions, ou dans la même localisation dans un type cellulaire donné. En tenant compte des changements visible dans les divers types cellulaires avec le temps, dans des régions données, une hypothèse de “charge” et “décharge” cellulaire est émise.

Zusammenfassung

Anläßlich einer mikroskopischen Studie über die Entwicklung des Mäuse-Calvariums von der Pränatalperiode bis zu 26 Tagen nach der Geburt wurden auch die Gewebetopographie sowie die Charakteristica und Eigenschaften der Zellen aufgezeichnet. Die Osteocyten-populationen in der linken und rechten Hälfte des Calvariums waren sich gleich, nahmen jedoch bei einem gegebenen Volumen mit der Zeit ab. Kleine isolierte Stellen von Knochen-matrix konnten leichter auf Ph sphat (oder Carbonat) angefärbt werden, als die umgebende Matrix, welche sich wohl am Schnitt, nicht aber am ganzen Stück färben ließ. Die verschiedenen Typen von Osteocyten wurden aufgrund histochemischer Calcium- und Phosphat-reaktionen bestimmt. Calcium und Phosphat waren innerhalb der Knochenzellen auf komplexe Art miteinander verbunden, die je nach Zeit und Lagerung unterschiedlich war. Zellen in abgetrennten Bereichen enthielten nicht immer Calcium und Phosphat und beide waren bei einer bestimmten Zellenart auch nicht immer am gleichen Ort abgelagert. Aufgrund der an ausgewählten Stellen beobachteten, zeitlich bedingten Veränderungen innerhalb der verschiedenen Zelltypen wird vorgeschlagen, daß es sich dabei um eine Sequenz von “Ladung” und “Entladung” der Zellen handelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaron, J. E., Pautard, F. G. E.: Ultrastructural features of phosphate in developing bone cells. Israel. J. med. Sci.8, 625–629 (1972).

    Google Scholar 

  • Augier, M.: Squelette cépalique. In: Traité d'anatomie humaine, vol. I (P. Poirier, A. Charpy, eds.), p. 89. Paris: Masson & Cie 1931.

    Google Scholar 

  • Barnicot, N. A.: The supravital staining of osteoclasts with neutral red. Proc. roy. Soc.134, 467–485 (1947).

    Google Scholar 

  • Bast, T. H.: Studies on the structure and multiplication of bone cells facilitated by a new technique. Amer. J. Anat.29, 139–157 (1921).

    Google Scholar 

  • Baud, C. A.: Submicroscopic structure and functional aspects of the osteocyte. Clin. Orthop.56, 227–236 (1968).

    PubMed  Google Scholar 

  • Bills, C. E., Elsenberg, H., Pallante, Sharon L.: Complexes of organic acids with calcium phosphate: the von Kossa stain as a clue to the composition of bone mineral. Johns Hopkins med. J.128, 194–207 (1971).

    PubMed  Google Scholar 

  • Bohatirchuk, F.: The study of calcification of mammalian cartilage in norm and pathology by stain historadiography. Amer. J. Anat.117, 287–310 (1965).

    PubMed  Google Scholar 

  • Bonucci, E.: The locus of initial calcification in cartilage and bone. Clin. Orthop.78, 108–139 (1971).

    PubMed  Google Scholar 

  • Brash, J. C.: Some problems on the growth and development mechanics of bone. Edinb. med. J., n.s. 4th.41, 305–387 (1934).

    Google Scholar 

  • De Angelis, V.: Autoradiographic investigation of calvarial growth in the rat. Amer. J. Anat.123, 359–363 (1968).

    PubMed  Google Scholar 

  • De Beer, G. R.: The development of the vertebrate skull. Oxford: Oxford Univ. Press 1937.

    Google Scholar 

  • Goldhaber, P., Stern, B. D., Glimcher, M. J., Chao, J.: The effects of parathyroid extract and thyrocalcictonin on bone remodelling in tissue culture. In: Parathyroid hormone and thyrocalcitonin (calcitonin) (R. V. Talmage, L. F. Belanger, eds.), p. 182–195. Montreal, Canada: Excerpta Medica Foundation 1968.

    Google Scholar 

  • Graumann, W.: Topogenese der Bindegewebsknochen. Untersuchungen an Schädelknochen menschlichen Embryonen. Z. Anat. Entwickl.-Gesch.116, 1–13 (1951).

    Google Scholar 

  • Hall, B. K.: The fate of adventitious and embryonic articular cartilage in the skull of the common fowl,Gallus domesticus (Aves: Phasianidae). Aust. J. Zool.16, 794–806 (1968).

    Google Scholar 

  • Ham, A. W.: A histological study of the early phases of bone repair. J. Bone Jt Surg.12, 827–844 (1930).

    Google Scholar 

  • Heersche, J. N. M.: The effect of thyrocalcotonin and parathyroid hormone on bone metabolism in tissue culture. Endocrin. Proc. kon. ned. Akad. Wet., Ser. C.72, 578–593 (1969).

    Google Scholar 

  • Heller-Steinberg, M.: Ground substance, bone salts and cellular activity in bone formation and destruction. Amer. J. Anat.89, 347–379 (1951).

    PubMed  Google Scholar 

  • Hirschman, P. N., Nichols, G.: The isolation and partial characterization of a calcium-rich particulate fraction from bone cells. Calcif. Tiss. Res.9, 67–79 (1972).

    Google Scholar 

  • Jande, S. S.: Fine structural study of osteocytes and their surrounding bone matrix with respect to their age in young chicks. J. Ultrastruct. Res.37, 279–300 (1971).

    PubMed  Google Scholar 

  • Jonston, P. M.: Autoradiographic studies of the utilisation of Ca45 by the chick embryo. J. biophys. biochem. Cytol.4, 163–167 (1958).

    PubMed  Google Scholar 

  • Kashiwa, H. K.: Calcium phosphate in osteogenic cells. A critique of the glyoxal bis (2-hydroxyanil) and the dilute silver acetate methods. Clin. Orthop.70, 200–211 (1970).

    PubMed  Google Scholar 

  • Kashiwa, H. K.: Mineralized spherules in cartilage of bone revealed by cytochemical methods. Amer. J. Anat.129, 459–465 (1970).

    PubMed  Google Scholar 

  • Kossa, J. von: Über die im Oragnismus künstlich erzeugbaren Verkalkungen. Beitr. path. Anat.29, 163–202 (1901).

    Google Scholar 

  • Massler, M., Schour, I.: Growth pattern of the cranial vault in the albino rat as measured by vital staining with alazarin red “S”. Anat. Res.110, 83–101 (1951).

    Google Scholar 

  • Moss, M. L.: Growth of the calvaria in the rat. Amer. J. Anat.94, 333–357 (1954).

    PubMed  Google Scholar 

  • Moss, M. L.: Fusion of the frontal suture of the rat. Amer. J. Anat.102, 141–165 (1958).

    PubMed  Google Scholar 

  • Murray, P. D. F.: Cartilage and bone: a problem in tissue differentiation, p. 65–73. A.N.Z. A.A.S. Report 1957.

  • Noback, C. R.: Some gross structural and quantitative aspects of the developmental anatomy of the human embryonic fetal and circumnatal skeleton. Anat. Rec.87, 29–51 (1943).

    Google Scholar 

  • Pautard, F. G. E.: A biomolecular survey of calcification. In: The Third European Symposium on Calcified Tissues (H. Fleisch, H. J. J. Blackwood, M. Owen, eds.), p. 108–122. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  • Pritchard, J. J., Scott, J. H., Girgis, F. G.: Structure and development of cranial facial sutures. J. Anat. (Lond.)90, 73–86 (1956).

    Google Scholar 

  • Reynolds, J. J., Dingle, J. T.: A sensitivein vitro method for studying the induction and inhibition of bone resorption. Calcif. Tiss. Res.4, 339–349 (1970).

    Google Scholar 

  • Rolle, G. K.: Calcium in normal and tetracycline-modified chick bone development. Calcif. Tiss. Res.3, 142–150 (1969).

    Google Scholar 

  • Schaffer, J.: Handbuch der mikroskopischen Anatomie des Menschen, Bd. 2. (W. v. Mollendorff, Hrsg.), S. 338. Berlin: Springer 1930.

    Google Scholar 

  • Shida, H.: Localization of ionic calcium inAmoeba proteus. Exp. Cell Res.63, 385–390 (1970).

    PubMed  Google Scholar 

  • Sitsen, A. E.: Zur Entwicklung der Nalte des Schädeldaches. Z. Anat. Entwickl.-Gesch.101, 121–152 (1933).

    Google Scholar 

  • Strelzoff, Z. G.: Über die Histogenese der Knochen. Unte. a. d. Inst. zu Zürich, hrsg. von C. J. Eberth. Leipzig 1873.

  • Suzuki, H. K.: Studies on the osseus system of the slider turtle. Ann. N.Y. Acad. Sci.109, 351–410 (1963).

    PubMed  Google Scholar 

  • Taves, D. R.: Mechanisms of calcification. Clin. Orthop.42, 207–219 (1965).

    PubMed  Google Scholar 

  • Villanueva, A. R.: An improved stain for fresh mineralized bone sections. Amer. J. clin. Path.47, 78–84 (1967).

    Google Scholar 

  • Youssef, E. H.: Development of the membrane bones and ossification of the chondrocranium in the albino rat. Acta anat. (Basel)72, 603–623 (1969).

    Google Scholar 

  • Young, R. W.: The influence of cranial contents on post-natal growth of the skull in the rat. Amer. J. Anat.105, 383–415 (1959).

    PubMed  Google Scholar 

  • Zichner, L.: The effect of calcitonin on bone cell in young rats. An electron microscope study. Israel J. Med. Sci.7, 359–366 (1971).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aaron, J.E. Osteocyte types in the developing mouse calvarium. Calc. Tis Res. 12, 259–279 (1973). https://doi.org/10.1007/BF02013740

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02013740

Key words

Navigation