Skip to main content
Log in

Quantitative analysis of abscisic acid in needles of Abies alba Mill. by electron capture gas chromatography

  • Original Articles
  • Published:
Trees Aims and scope Submit manuscript

Summary

The amount of abscisic acid (ABA) in needles of silver fir from a natural location was investigated with regard to position in the crown, damage, seasonal variation, and needle age. Because of problems of quantification of ABA in coniferous needles, which contain numerous secondary plant products, a method for reliable determination of both isomers cis-trans-ABA (c-ABA) and transtrans-ABA (t-ABA) was developed. By means of gas chromatography (GC) using an electron capture detector (BCD) and a programmed temperature vaporizer (PTV) injector complete separation of both compounds was achieved. Two different pairs of fir were investigated — in each case a damaged and a healthy tree. Needles from both trees from the first and the second pair collected in September contained 500–1100 ng c-ABA/g fresh weight (FW), and the concentrations of t-ABA varied from 400 to 700 ng/g FW. Investigations from the second pair show highest amounts of 2900 ng/g Fw c-ABA and 1800 ng/g FW of t-ABA in May and June. For the first pair a higher c-ABA content was found in needles from the top of the crown than in those from the middle and the base. This difference could not be confirmed in the analysis of the second pair. Because of the strong natural deviation no statistically significant difference between the healthy and the damaged tree was found. The first pair of firs examined showed a higher t-ABA concentration than the second one. In this case the highest amount was found in the top of the crown. Methodical mistakes during the clean-up procedure and in quantification by gas chromatography could be excluded. The presence of c- and t-ABA in the purified extract was corroborated by mass spectrometry. With regard to the seasonal variation both isomers of ABA show an unequivocal trend. The maximum concentration is achieved in May to June, whereas the content is minimal in August/September. In any case the level of t-ABA is lower than that of c-ABA. No correlation between the amount of ABA and the needle age could be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blank LW, Roberts TM, Skeffington RA (1988) New perspectives on forest decline. Nature 336: 27–30

    Google Scholar 

  • Bousquet E, Santagati NA, Romeo G (1986) Clean-up and quantification of abscisic acid from Citrus leaves by reversed-phase high-performance liquid chromatography. J Chromatogr 354: 503–506

    Google Scholar 

  • Carrasquer AM, Casals I, Alegre L (1990) Semi-automated method for the determination of abscisic acid in crude plant extracts. J Chromatogr 503: 459–465

    Google Scholar 

  • Christmann A, Frenzel B (1987) Untersuchungen zum Hormonhaushalt gesunder und kranker Nadelbäume. AFZ 27/28/29: 746–749

    Google Scholar 

  • Davis WJ, Mansfield TA (1983) The role of abscisic acid in drought avoidance. In: Addicott FT (ed) Abscisic acid. Praeger, New York, pp 237–268

    Google Scholar 

  • Deigele C (1991) Lösliche phenolische Verbindungen und Monoterpene in Nadeln von Picea abies (L.) Karst, und Blättern von Salvia officinalis L. Dissertation TU München, Fachbereich Chemie, Biologie, Geowissenschaften

    Google Scholar 

  • Dörffling K, Tietz D (1983) Methods for the detection and estimation of abscisic acid and related compounds. In: Addicott FT (ed) Abscisic acid. Praeger, New York, pp 23–77

    Google Scholar 

  • Dumbroff EB, Cohen DB, Webb DP (1979) Seasonal levels of abscisic acid in buds and stems of Acer saccharum. Physiol Plant 45: 211–214

    Google Scholar 

  • Durley RC, Kannangara T, Simpson GM (1982) Leaf analysis for abscisic, phaseic and 3-indolylacetic acids by high-performance liquid chromatography. J Chromatogr 236: 181–188

    Google Scholar 

  • Fackler U, Huber W, Hock B (1986) Einfluß von Mineralstoffernährung, Ozon und saurem Nebel auf Indolessigsäure und Absicinsäure in Nadeln von Picea abies (L.) Karst. Forstw Cbl 105: 254–257

    Google Scholar 

  • Frenzel B, Christmann A (1987) Untersuchungen zum Hormonhaushalt gesunder und kranker Nadelbäume. Kfk-Karlsruhe, PEF-Berichte 41: 45–182

    Google Scholar 

  • Gerecke K-L (1990) “Tannensterben” und “Neuartige Waldschäden” — Ein Beitrag aus der Sicht der Waldwachstumskunde. Allg Forst Jadgz 5: 81–96

    Google Scholar 

  • Granier A, Claustres JP (1989) Relations hydriques dans un epicea (Picea abies L.) en conditions naturelles: variations spatiales. Oecol Plant 3: 295–310

    Google Scholar 

  • Guinn G, Brummett DL, Beier RC (1986) Purification and measurement of abscisic acid and indoleacetic acid by high performance liquid chromatography. Plant Physiol 81: 997–1002

    Google Scholar 

  • Hatcher PE (1990) Seasonal and age-related variation in the needle quality of five conifer species. Oecologia 85: 200–212

    Google Scholar 

  • Hubick KT, Reid DM (1980) A rapid method for the extraction and analysis of abscisic acid from plant tissue. Plant Physiol 65: 523–525

    Google Scholar 

  • Johnson JD, Ferrell WK (1982) The relationship of abscisic acid metabolism to stomatal conductance in douglas-fir during water stress. Physiol Plant 55: 431–437

    Google Scholar 

  • Jones WW, Coggins Jr CW, Embleton TW (1976) Endogenous abscisic acid in relation to bud growth in alternate bearing “Valencia” orange. Plant Physiol 58: 681–682

    Google Scholar 

  • Kettner J, Dörffling K (1987) Abscisic acid metabolism in Ceratocystis coerulescens. Physiol Plant 69: 278–282

    Google Scholar 

  • Kremer H, Pfanz H, Hartung W (1987) Die Wirkung saurer Luftschadstoffe auf Verteilung und Transport pflanzlicher Wachstumsregulatoren in Laub und Nadelblättern. AFZ 27/28/29: 741–744

    Google Scholar 

  • Larsen JB (1986) Das Tannensterben: Eine neue Hypothese zur Klärung des Hintergrundes dieser rätselhaften Komplexkrankheit der Weißtanne (Abies alba Mill.). Forstw Cbl 5: 381–396

    Google Scholar 

  • Larsen JB, Friedrich J (1988) Wachstumsreaktionen verschiedener Provenienzen der Weißtanne (Abies alba Mill.) nach winterlicher SO2Begasung. Eur J For Path 18: 190–199

    Google Scholar 

  • Leshem Y, Philosoph S, Wurzburger J (1974) Glykosylation of free trans-trans abscisic acid as a contributing factor in bud dormancy break. Biochem Biophys Res Commun 57: 526–531

    Google Scholar 

  • Levitt MI (1973) Rapid methylation of microamounts of non-volatile acids. Anal Chem 45: 618–620

    Google Scholar 

  • Little CHA, Heald JK, Browning G (1978) Identification and measurement of indoleacetic and abscisic acids in the cambial region of Picea sitchensis (Bong.) Carr. by combined gas chromatography-mass spectrometry. Planta 139: 133–138

    Google Scholar 

  • Little CHA, Wareing PF (1981) Control of cambial activity and dormancy in Picea sitchensis by indol-3-ylacetic and abscisic acids. Can J Bot 59: 1480–1493

    Google Scholar 

  • Naumann R, Ludewig M, Fenner R, Lalk I, Bigdon M, Dörffling K (1988) Untersuchung physiologischer Kenngrößen zur Beurteilung des Schadenszustandes von Fichten. In: Bauch J, Michaelis W (eds) Das Forschungsprogramm Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS 88/E/55: 151–171

  • Neill SJ, Horgan R (1987) Abscisic acid and related compounds. In: Rivier L, Crozier A (eds) Principles and practice of plant hormone analysis, vol 1. Academic Press, London, pp 111–167

    Google Scholar 

  • Netting AG, Milborrow BV, Duffield AM (1982) Determination of abscisic acid in Eucalyptus haemastoma leaves using gas chromatography/mass spectrometry and deuterated internal standards. Phytochem 21: 385–389

    Google Scholar 

  • Oden P-C, Dunberg A (1984) Abscisic acid in shoots and roots of Scots pine (Pinus sylvestris L.). Planta 161: 148–155

    Google Scholar 

  • Powell L, Maybee C (1985) Hormone analysis employing “Baker”-10 SPE disposable columns. Plant Physiol (Bethesda) 77, 76 (Suppl 4)

    Google Scholar 

  • Puttonen P (1987) Abscisic acid concentration in douglas-fir needles in relation to lifting date, cold storage, and postplanting vigor of seedlings. Can J For Res 17: 383–387

    Google Scholar 

  • Sandberg G, Dünberg A, Oden PC (1981) Chromatography of acid phytohormones on columns of Sephadex LH-20 and insoluble polyN-vinylpyrrolidone and application to the analysis of conifer extracts. Physiol Plant 53: 219–224

    Google Scholar 

  • Schomburg G (1977) Gaschromatographie. Chemie, Weinheim

    Google Scholar 

  • Schütt P, Blaschke H, Hoque E, Koch W, Lang KJ, Schuck HJ (1983) Erste Ergebnisse einer botanischen Inventur des “Fichtensterbens”. Forstw Cbl 102: 158–166

    Google Scholar 

  • Squire RO, Neales TF, Loveys BR, Attiwill PM (1988) The influence of water deficits on needle conductance, assimilation rate and abscisic acid concentration of seedlings of Pinus radiata D. Don. Plant Cell Environ 11: 13–19

    Google Scholar 

  • Subbaiah T, Powell L (1987) Abscisic acid in dormant apple seed tissues — a rapid purification scheme using prepacked columns and GCMSSIM quantitation. Physiol Plant 71: 203–206

    Google Scholar 

  • Trewavas AJ, Cleland RE (1983) Is plant development regulated by changes in the concentration of growth substances or by changes in the sensitivity to growth substances? TIBS, October 1983: 354–359

  • Walton DC (1980) Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31: 453–489

    Google Scholar 

  • Webber JE, Laver ML, Zaerr JB, Lavender DP (1979) Seasonal variation of abscisic acid in the dormant shoots of douglas fir. Can J Bot 57: 534–538

    Google Scholar 

  • Wright STC, Hiron RWP (1969) (+)-Abscisic acid, the growth inhibitor in detached wheat leaves following a period of wilting. Nature 224: 719–720

    Google Scholar 

  • Ziegler I (1975) The effect of SO2-pollution on plant metabolism. Res Rev 56: 79–105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraus, M., Ziegler, H. Quantitative analysis of abscisic acid in needles of Abies alba Mill. by electron capture gas chromatography. Trees 7, 175–181 (1993). https://doi.org/10.1007/BF00199619

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199619

Key words

Navigation