Skip to main content
Log in

Ultrastructure of the pineal organ of the killifish, Fundulus heteroclitus, with special reference to the secretory function

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The pineal organ of the killifish, Fundulus heteroclitus, was investigated by electron microscopy under experimental conditions; its general and characteristic features are discussed with respect to the photosensory and secretory function. The strongly convoluted pineal epithelium is usually composed of photoreceptor, ganglion and supporting cells. In addition to the well-differentiated photosensory apparatus, the photoreceptor cell contains presumably immature dense-cored vesicles (140–220 nm in diameter) associated with a well-developed granular endoplasmic reticulum in the perinuclear region and the basal process. These dense-cored vesicles appear rather prominent in fish subjected to darkness. The ganglion cell shows the typical features of a nerve cell; granular endoplasmic reticulum, polysomes, mitochondria and Golgi apparatus are scattered in the electron-lucent cytoplasm around the spherical or oval nucleus. The dendrites of these cells divide into smaller branches and form many sensory synapses with the photoreceptor basal processes. Lipid droplets appear exclusively in the supporting cell, which also contains well-developed granular endoplasmic reticulum and Golgi apparatus. Cytoplasmic protrusions filled with compact dense-cored vesicles (90–220 nm in diameter) are found in dark-adapted fish. The origin of these cytoplasmic protrusions, however, remains unresolved. Thus, the pineal organ of the killifish contains two types of dense-cored vesicles which appear predominantly in darkness. The ultrastructural results suggest that the pineal organ of fish functions not only as a photoreceptor but also as a secretory organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod J, Wurtman RJ, Snyder S (1965) Control of hydroxyindole-O-methyltransferase activity in the rat pineal gland by environmental lighting. J Biol Chem 240:949–954

    Google Scholar 

  • Collin JP (1979) Recent advances in pineal cytochemistry. Evidence of the production of indoleamines and proteinaceous substances by rudimentary photoreceptor cells and pinealocytes of Amniota. In: Kappers J Ariëns, Pévet P (eds) The pineal gland of vertebrates including man. Prog Brain Res, Elsevier/North-Holland, Amsterdam, Vol 52, pp 271–296

    Google Scholar 

  • Collin JP, Meiniel A (1973) Métabolisme des indoléamines dans l'organe pineal de Lacerta (Reptiles, Lacertiliens). I. Intégration selective de 5-HTP-3H (5-hydroxytryptophan-3H) et rétention de ses dérivés dans les photorécepteurs rudimentaires sécrétoires. Z Zellforsch 142: 549–570

    Google Scholar 

  • Collin JP, Calas A, Juillard MJ (1976) The avian pineal organ. Distribution of exogenous indoleamines: a qualitative study of the rudimentary photoreceptor cells by electron microscopic radioautography. Exp Brain Res 25:15–23

    Google Scholar 

  • De Vlaming VL (1975) Effects of pinealectomy on gonadal activity in the cyprinid teleost, Notemigonus crysolencas. Gen Comp Endocrinol 26:36–49

    Google Scholar 

  • Falcon J (1979a) L'organe pinéal du Brochet (Esox lucius, L.) I. Etude anatomique et cytologique. Ann Biol Anim Bioch Biophys 19:445–465

    Google Scholar 

  • Falcon J (1979b) Unusual distribution of neurons in the pike pineal organ. In: Kappers J Ariëns, Pévet P (eds) The pineal gland of vertebrates including man. Prog Brain Res, Elsevier/North-Holland, Amsterdam, Vol 52, pp 89–92

    Google Scholar 

  • Falcon J, Mocquard JP (1979) L'organe pineal du Brochet (Esox lucius, L.). III. Voies intrapinéales de conduction des messages photosensoriels. Ann Biol Anim Bioch Biophys 19:1043–1061

    Google Scholar 

  • Falcon J, Juillard MA, Collin JP (1980) L'organe pineal du Brochet (Esox lucius L.). IV. Sérotonine endogène et activité monoamine oxydasique; étude histochimique, ultracytochimique et pharmacologique. Reprod Nutr Dév 20:139–154

    Google Scholar 

  • Fenwick JC (1970) Demonstration and effect of melatonin in fish. Gen Comp Endocrinol 14:86–97

    Google Scholar 

  • Gern WA, Owens DW, Ralph CL (1978) Persistence of the nychthemeral rhythm of melatonin secretion in pinealectomized or optic tract-sectioned trout (Salmo gairdneri). J Exp Zool 205:371–376

    Google Scholar 

  • Hafeez MA, Quay WB (1969) Histochemical and experimental studies on 5-hydroxytryptamine in pineal organs of teleosts (Salmo gairdneri and Atherinopsis californiensis). Gen Comp Endocr 13:211–217

    Google Scholar 

  • Hafeez MA, Zerihun L (1974) Studies on central projections of the pineal nerve tract in rainbow trout, Salmo gairdneri Richardson, using cobalt chloride iontophoresis. Cell Tissue Res 154:485–510

    Google Scholar 

  • Hafeez MA, Zerihun L (1976) Autoradiographic localization of 3H-5-HTP and 3H-5-HT in the pineal organ and circumvenricular areas in the rainbow trout, Salmo gairdneri Richardson. Cell Tissue Res 170:61–76

    Google Scholar 

  • Hanyu I, Niwa H, Tamura T (1969) Slow potential from the epiphysis cerebri of fishes. Vison Res 9:621–623

    Google Scholar 

  • Hanyu I, Niwa H, Tamura T (1978) Salient features in photosensory function of teleostean pineal organ. Comp Biochem Physiol 61 A: 49–54

    Google Scholar 

  • Herwig HJ (1976) Comparative ultrastructural investigations of the pineal organ of the blind cave fish, Anoptichthys jordani, and its ancestor, the eyed river fish, Astyanax mexicanus. Cell Tissue Res 167:297–324

    Google Scholar 

  • Herwig HJ (1979) Morphological indications for endocrine activity in the pineal organ of teleost fishes. In: Kappers J Ariëns, Pévet P (eds) The pineal gland of vertebrates including man. Progr Brain Res, Elsevier/Holland, Amsterdam, Vol 52, pp 213–217

    Google Scholar 

  • Juillard MJ, Collin JP (1979) Membranous sites of oxidative deamination: a comparison between ultracytochemical and radioautographic studies in the pineal organ of the wall lizard and parakeet. Biol Cellulaire 36:29–36

    Google Scholar 

  • Karasek M, Marek K (1978) Influence of gonadtropic hormones on the ultrastructure of rat pinealocytes. Cell Tissue Res 188:133–141

    Google Scholar 

  • Klein DC, Weller JL (1970) Indole metabolism in the pineal gland: a circadian rhythm in N- acetyltransferase. Science 169:1093–1095

    Google Scholar 

  • Korf HW (1974) Acetylcholinesterase-positive neurons in the pineal and parapineal organs of the rainbow trout, Salmo gairdneri (with special reference to the pineal tract). Cell Tissue Res 155:475–489

    Google Scholar 

  • Morita Y (1966) Entladungsmuster pinealer Neurone der Regenbogenforelle (Salmo irideus) bei Belichtung des Zwischenhirns. Pfluegers Archiv 289:155–167

    Google Scholar 

  • McNulty JA, Nafpaktitis BG (1977) Morphology of the pineal complex in seven species of lantern fishes (Pisces: Myctophidae). Am J Anat 150:509–530

    Google Scholar 

  • Oguri M, Omura Y (1973) Ultrastructure and functional significance of the pineal organ of teleosts. In: Chavin W (ed) Responses of Fish to Environmental Changes, Charles C Thomas, Springfield, pp 412–434

    Google Scholar 

  • Oguri M, Omura Y, Hibiya T (1968) Uptake of 14C-labelled 5-hydroxytryptophan into the pineal organ of rainbow trout. Bull Jpn Soc Sci Fish 34:687–690

    Google Scholar 

  • Ohba S, Wake K, Ueck M (1979) Histochemical and electron microscopical findings in the pineal organ of Carassius gibelio (Langsd). In: Kappers J Ariëns, Pévet P (eds) The pineal gland of vertebrates including man. Prog Brain Res, Elsevier/North Holland, Amsterdam, Vol 52, pp 93–96

    Google Scholar 

  • Oksche A, Hartwig G (1979) Pineal sense organs-components of photoneuroendocrine systems. In: Kappers J Ariëns, Pévet P (eds) The pineal gland of vertebrates including man. Prog Brain Res, Elsevier/North-Holland, Amsterdam, Vol 52, pp 113–130

    Google Scholar 

  • Oksche A, Kirschstein H (1967) Die Ultrastruktur der Sinneszellen im Pinealorgan von Phoxinus laevis L. Z Zellforsch 78:151–166

    Google Scholar 

  • Oksche A, Kirschstein H (1971) Weitere elektronenmikroskopische Untersuchungen am Pinealorgan von Phoxinus laevis (Teleostei, Cyprinidae). Z Zellforsch 112:572–588

    Google Scholar 

  • Omura Y (1975) Influence of light and darkness on the ultrastructure of the pineal organ in the blind cave fish, Astyanax mexicanus. Cell Tissue Res 160:99–112

    Google Scholar 

  • Omura Y (1979) Light and electron microscopic studies on the pineal tract of rainbow trout, Salmo gairdneri. Rev Can Biol 38:105–118

    Google Scholar 

  • Omura Y, Ali MA (1980) Responses of pineal photoreceptors in the brook and rainbow trout. Cell Tissue Res 208:111–122

    Google Scholar 

  • Omura Y, Ali MA (1981) Effect of hypophysectomy on the synaptic ribbons in the pineal organ of the killifish, Fundulus heteroclitus (unpublished findings)

  • Omura Y, Kitoh J, Oguri M (1969) The photoreceptor cell of the pineal organ of ayu, Plecoglossus altivelis. Bull Jpn Soc Sci Fish 35:1067–1071

    Google Scholar 

  • Omura Y, Oguri M (1971) The development and degeneration of the photoreceptor outer segment of the fish pineal organ. Bull Jpn Soc Sci Fish 37:851–860

    Google Scholar 

  • Owman C, Rüdeberg C (1970) Light, fluorescence, and electron microscopic studies on the pineal organ of the pike, Esox lucius, L., with special regard to 5-hydroxytryptamine. Z Zellforsch 107:522–550

    Google Scholar 

  • Petit A (1971) L'épiphyse d'un serpent: Tropidonotus natrix L. II. Etudes cytochimique, autoradiographique et pharmacologique. Z Zellforsch 120:246–260

    Google Scholar 

  • Pévet P (1979) Secretory process in the mammalian pinealocyte under natural and experimental conditions. In: Kappers J Ariëns, Pévet P (eds) The pineal gland of vertebrates including man. Progr Brain Res, Elsevier/North-Holland, Amsterdam, Vol 52, pp 149–194

    Google Scholar 

  • Pévet P (1980) The pineal gland of the mole (Talpa europala L.). VI. Fine structure of fetal pinealocytes. Cell Tissue Res 206:417–430

    Google Scholar 

  • Pévet P, Smith AR (1975) The pineal gland of mole (Talpa europaea L.). II. Ultrastructural variations observed in the pinealocytes during different parts of the sexual cycle. J Neural Transm 36:227–248

    Google Scholar 

  • Pévet P, Kappers J Ariëns, Voûte AM (1977) The pineal gland of nocturnal mammals. I. The pinealocytes of the bat (Nyctasus noctula, Schreber). J Neural Transm 40:47–68

    Google Scholar 

  • Quay WB (1963) Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen Comp Endocrinol 3:473–479

    Google Scholar 

  • Quay WB (1965) Retinal and pineal hydroxyindole-O-methyltransferase activity in vertebrates. Life Sci 4:983–991

    Google Scholar 

  • Quay WB (1974) Pineal Chemistry in Cellular and Physiological Mechanisms. Charles C Thomas Springfield

    Google Scholar 

  • Romijn HJ, Gelsema AJ (1976) Electron microscopy of the rabbit pineal organ in vitro. Evidence of norepinephrine-stimulated secretory activity of the Golgi apparatus. Cell Tissue Res 172:364–377

    Google Scholar 

  • Rüdeberg C (1968) Structure of the pineal organ of the sardine, Sardina pilchardus sardina (Risso), and some further remarks on the pineal organ of Mugil spp. Z Zellforsch 84:219–237

    Google Scholar 

  • Rüdeberg C (1969) Light and electron microscopic studies on the pineal organ of the dogfish, Scyliorhinus canicula L. Z Zellforsch 96:548–581

    Google Scholar 

  • Smith JR, Weber LJ (1976) The regulation of day-night changes in hydroxyindole-O-methyltransferase activity in the pineal gland of the steel-head trout (Salmo gairdneri). Can J Zool 54:1530–1534

    Google Scholar 

  • Tabata M, Tamura T, Niwa H (1975) Origin of the slow potential in pineal organ of the rainbow trout. Vision Res 15:737–740

    Google Scholar 

  • Ueck M (1968) Granulierte marklose Nervenfasern in der Epiphysenregion von Anuren. Z Zellforsch 90:389–402

    Google Scholar 

  • Ueck M (1979) Innervation of the vertebrate pineal. In: Kappers J Ariëns, Pévet P (eds) The pineal gland vertebrates including man. Prog Brain Res, Elsevier/North-Holland, Amsterdam, Vol 52, pp 45–88

    Google Scholar 

  • Urasaki H (1973) Effect of pinealectomy and photoperiod on oviposition and gonadal development inthe fish, Oryzias latipes. J Exp Zool 185:241–246

    Google Scholar 

  • Vivien-Roels B, Guerne JM, Holder FC, Schroeder MD (1979) Comparative immunohistochemical, radioimmunological and biological attempt to identify arginine-vasotocin (AVT) in the pineal gland of reptiles and fishes. In: Kappers J Ariëns, Pévet P (eds) The Pineal Gland of Vertebrates including Man. Progr Brain Res, Elsevier/North-Holland, Amsterdam, Vol 52, pp 459–463

    Google Scholar 

  • Vodicnik MJ, Krai RE, de Vlaming VL (1978) The effects of pinealectomy on pituitary plasma gonadotropin levels in Carassius auratus exposed to various photoperiod-temperature regimes. J Fish Biol 12:187–196

    Google Scholar 

  • Wake K (1973) Acetylcholinesterase-containing nerve cells and their distribution in the pineal organ of the goldfish, Carassius auratus. Z Zellforsch 145:287–298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank Dr. Grace Pickford for the fishes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omura, Y., Ali, M.A. Ultrastructure of the pineal organ of the killifish, Fundulus heteroclitus, with special reference to the secretory function. Cell Tissue Res. 219, 355–369 (1981). https://doi.org/10.1007/BF00210154

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00210154

Key words

Navigation