Skip to main content
Log in

The ciliated sensory cell of Stauridiosarsia producta (Cnidaria, Hydrozoa) — a nematocyst-free nematocyte?

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

A mechanosensitive ciliated cell type of the polyp Stauridiosarsia producta (Hydrozoa) was investigated by means of electron microscopy. These cells bear at their apical cell surface a modified cilium, a set of seven stereovilli, a so-called pseudovillar system and a large vacuole. Cilium and stereovilli are interconnected like the cnidocil apparatus of hydrozoan nematocytes which is responsible for mechanoelectric transduction. The vacuole is enclosed by and linked to the pseudovillar system by a microtubular basket. Considering its structural organization and physiological activities the ciliated sensory cell closely resembles a nematocyte that has lost its ability ot produce a nematocyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brinkmann M, Thurm U (1993) Mechanoreceptive properties of hydrozoan nematocytes in situ. In: Elsner N, Heisenberg M (eds) Proc 21st Göttingen neurobiol conf. Thieme, Stuttgart, p 155

    Google Scholar 

  • Brinkmann M, Golz R, Thurm U (1994) Determination of the site of mechanoelectrical transduction in the nematocytes of Stauridiosarsia by combined electrophysiological and ultrastructural investigations. Elsner N, Breer H (eds) Proc 22nd Göttingen neurobiol conf. Thieme, Stuttgart, p 67

    Google Scholar 

  • Budelmann BU (1989) Hydrodynamic receptor systems in invertebrates. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 607–631

    Google Scholar 

  • Cormier SM, Hessinger DA (1980) Cnidocil apparatus: Sensory receptor of Physalia nematocytes. J Ultrastruct Res 72:13–19

    Google Scholar 

  • Golz R (1994) Occurrence and distribution of RFamide-positive neurons within the polyps of Coryne sp. (Hydrozoa, Corynidae). Biol Bull 186:115–123

    Google Scholar 

  • Golz R, Thurm U (1991a) Cytoskeletal modifications of the sensorimotor-interneurons of Hydra vulgaris (Cnidaria, Hydrozoa), indicating a sensory function similar to chordotonal receptors of insects. Zoomorphology 111:113–118

    Google Scholar 

  • Golz R, Thurm U (1991b) Cytoskeleton-membrane interactions in the cnidocil complex of hydrozoan nematocytes. Cell Tissue Res 263:573–583

    Google Scholar 

  • Golz R, Thurm U (1993) Ultrastructural evidence for the occurrence of three types of mechanosensitive cells in the tentacles of the cubozoan polyp Carybdea marsupialis. Protoplasma 173:13–22

    Google Scholar 

  • Hausmann K, Holstein T (1985) Bilateral symmetry in the cnidocil-nematocyst complex of the freshwater medusa Craspedacusta sowerbii Lankester (Hydrozoa, Limnomedusae). J Ultrastruct Res 90:89–104

    Google Scholar 

  • Holstein T (1981) The morphogenesis of nematocytes in Hydra and Forskalia: An ultrastructural study. J Ultrastruct Res 75:276–290

    Google Scholar 

  • Holstein T, Hausmann K (1988) The cnidocil apparatus of hydrozoans: A progenitor of higher metazoan mechanoreceptors? In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 53–73

    Google Scholar 

  • Holstein T, Tardent P (1984) An ultrashigh-speed analysis of exocytosis: Nematocyst discharge. Science 223:830–833

    Google Scholar 

  • Koizumi O, Wilson JD, Grimmelikhuijzen CJP, Westfall JA (1989) Ultrastructural localization of RFamide-like peptides in neuronal dense-cored vesicles in the peduncle of Hydra. J Exp Zool 249:17–22

    Google Scholar 

  • Mariscal RN (1974) Nematocysts. In: Muscatine L, Lenhoff HM (eds) Coelenterate biology. Academic Press, New York, pp 129–178

    Google Scholar 

  • Slautterback DB (1967) The cnidoblastmusculo-epithelial cell complex in the tentacles of Hydra. Z Zellforsch 79:296–318

    Google Scholar 

  • Stidwill RP, Honegger TG (1989) A single layer of microtubules is part of a complex cytoskeleton in mature nematocytes of Hydra. Tissue Cell 21:179–188

    Google Scholar 

  • Stoessel F, Tardent P (1971) Die Reaktionsmuster von Coryne pintneri und Sarsia reesi (Athecata: Capitata) auf Berührungsreize. Rev Suisse Zool 78:689–697

    Google Scholar 

  • Tardent P, Holstein T (1982) Morphology and morphodynamics of the stenotele nematocyst of Hydra attenuata Pall. (Hydrozoa, Cnidaria). Cell Tissue Res 224:269–290

    Google Scholar 

  • Tardent P, Schmid V (1972) Ultrastructure of mechanoreceptors of the polyp Coryne pintneri (Hydrozoa, Athecata). Exp Cell Res 72:265–275

    Google Scholar 

  • Weber J (1989) Nematocysts (stinging capsules of cnidaria) as Donnan-potential-dominated osmotic systems. Eur J Biochem 184:465–476

    Google Scholar 

  • Westfall JA (1973) Ultrastructural evidence for a granule-containing sensory-motor-interneuron in Hydra littoralis. J Ultrastruct Res 42:268–282

    Google Scholar 

  • Westfall JA (1988) Presumed neuronematocyte synapses and possible pathways controlling discharge of a battery of nematocysts in Hydra. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 41–51

    Google Scholar 

  • Wood RL, Novak PL (1982) The anchoring of nematocysts and nematocytes in the tentacles of Hydra. J Ultrastruct Res 81:104–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golz, R., Thurm, U. The ciliated sensory cell of Stauridiosarsia producta (Cnidaria, Hydrozoa) — a nematocyst-free nematocyte?. Zoomorphology 114, 185–194 (1994). https://doi.org/10.1007/BF00403266

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403266

Keywords

Navigation