Skip to main content
Log in

Real-time recognition of microscopic phase objects

  • Contributed Papers
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

A method of image enhancement and real-time input of 3-D, microscopic phase objects into a coherent optical pattern recognition system is described. The method consists of directing a low-power laser beam into a microscope objective to produce a real, magnified, coherent image of the specimen under test. The image plane is followed by two successive Fourier transform (FT) planes. In the first FT plane, low and high frequency spatial filters, one of which is photographically produced, are used as pre-processing filters to enhance the image quality. The enhanced signal is imaged from the first FT plane to the second FT plane which contains a matched spatial filter used for specimen identification. The system does not require an expensive incoherent-to-coherent light transducer and in addition, is capable of utilizing both phase and amplitude information from 3-D objects. Examples of results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vander Lugt, F. Rotz, A. Klooster: InSymposium on Optical and Electro-Optical Information Processing, ed. by J. T. Tippett, D.A. Berkowitz, L.C. Clapp, C.J. Koester, A. Vanderburgh, Jr. (MIT Press, Cambridge, MA, 1965) pp. 125–141

    Google Scholar 

  2. M. De, A.W. Lohmann: Appl. Opt.6, 2171–2175 (1967)

    ADS  Google Scholar 

  3. E.N. Leith: Proc. IEEE59, 1305–1318 (1971)

    Google Scholar 

  4. R. Wohlers, R. Herold, S. Jost, J. Lisa, J. Mendelsohn, B. Pernick, R.E. Koop: “Coherent Optical Processing Techniques for Screening Cervical Smears”, Grumman Research Department Report RE-519 (1976)

  5. K. Preston:Coherent Optical Computers (McGraw-Hill, New York 1972)

    Google Scholar 

  6. J.C. Vienot, J. Bulabois, L.R. Guy: Optics Comm.2, 431–434 (1971)

    Article  ADS  Google Scholar 

  7. C.B. Tropper: J. Physiol.11, 297–302 (1975)

    Google Scholar 

  8. K.L. Dickson, J.P. Slocomb, J. Cairns, Jr., S.P. Almeida, J.K.T. Eu: InBiological Monitoring of Water and Effluent Quality, ed. by J. Cairns, Jr., K.L. Dickson, G.F. Westlake (ASTM, Philadelphia, PA 19 ) 121–132

    Google Scholar 

  9. S.P. Almeida, J.K.T. Eu: Appl. Opt.15, 510–515 (1976)

    ADS  Google Scholar 

  10. J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer: Opt. Eng.14, 217–225 (1975)

    ADS  Google Scholar 

  11. S.L. Hou, D.S. Oliver: Appl. Phys. Lett.18, 325–328 (1971)

    Article  Google Scholar 

  12. M.E. Cox: Microscope22, 361–366 (1974)

    Google Scholar 

  13. R.F. VanLigten, H. Osterberg: Nature211, 282–283 (1966)

    Article  ADS  Google Scholar 

  14. P. Hutzler: Appl. Opt.16, 2264–2272 (1977)

    ADS  Google Scholar 

  15. R.L. Lowe: J. Phycol.11, 415–424 (1975)

    Article  Google Scholar 

  16. B.J. Thompson: InOptical Transforms, ed. by H. Lipson (Academic Press, New York 1972) pp. 267–298

    Google Scholar 

  17. J. Santamaria, P.T. Gough, D.W. Warren: Appl. Opt.16, 1513–1520 (1977)

    ADS  Google Scholar 

  18. D. Casasent, A. Furman: Appl. Opt.16, 1662–1669 (1977)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Case, S.K., Almeida, S.P., Dallas, W.J. et al. Real-time recognition of microscopic phase objects. Appl. Phys. 17, 287–293 (1978). https://doi.org/10.1007/BF00886957

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00886957

PACS

Navigation