Skip to main content
Log in

The cellular level of yeast ribosomal protein L25 is controlled principally by rapid degradation of excess protein

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

When the gene dosage for the primary rRNA-binding ribosomal protein L25 in yeast cells was raised about 50-fold, the level of mature L25 transcripts was found to increase almost proportionally. The plasmid-derived L25 transcripts were structurally indistinguishable from their genomic counterparts, freely entered polysomes in vivo and were fully translatable in a heterologous in vitro system. Nevertheless, pulse-labelling for periods varying from 3–20 min did not reveal a significant elevation of the intracellular level of L25 protein. When pulse-times were decreased to 10–45 s, however, we did detect a substantial over production of L25. We conclude that, despite the strong RNA-binding capacity of the protein, accumulation of L25 is not controlled by an autogenous (pre-)mRNA-targeted mechanism similar to that operating in bacteria, but rather by extremely rapid degradation of excess protein produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

rRNA:

ribosomal RNA

r-protein:

ribosomal protein

pre-mRNA:

precursor mRNA

References

  • Abovich N, Gritz L, Tung L, Rosbash M (1985) Mol Cell Biol 5:3429–3435

    Google Scholar 

  • Beggs JD (1978) Nature (London) 275:104–109

    Google Scholar 

  • Bollen GHPM, Mager WH, Jenneskens LW, Planta RP (1980) Europ J Biochem 105:75–80

    Google Scholar 

  • Bollen GHPM, Molenaar CMT, Cohen LH, van Raamsdonk-Duin MMC, Mager WH, Planta RJ (1982) Gene 18:29–37

    Google Scholar 

  • Bromley S, Hereford L, Roshbash M (1982) Mol Cell Biol 2:1205–1211

    Google Scholar 

  • Davis RW, Thomas M, Cameron J, St John TP, Scherer S, Padgett RA (1980) Methods Enzymol 65:404–411

    Google Scholar 

  • Deckman IC, Draper DE (1985) Biochemistry 24:7860–7865

    Google Scholar 

  • ElBaradi TTAL, Raué HA, deRegt VCHF, Planta RJ (1984) Europ J Biochem 144:393–400

    Google Scholar 

  • ElBaradi TTAL, Raué HA, deRegt VCHF, Verbree EC, Planta RJ (1985) EMBO J 4:2201–2107

    Google Scholar 

  • Gorenstein C, Warner JR (1977) Mol Gen Genet 157:327–332

    Google Scholar 

  • Hardy SJS, Kurland CG, Voynow P, Mora G (1969) Biochemistry 8:2897–2905

    Google Scholar 

  • Himmelfarb HJ, Vassarotti A, Friesen JD (1984) Mol Gen Genet 195:500–506

    Google Scholar 

  • Huet J, Cottrelle P, Cool M, Vignais M-L, Thiele D, Marc C, Buhler J-M, Sentenac A, Fromageot P (1985) EMBO J 4:3539–3547

    Google Scholar 

  • Jacobs FA, Bird RC, Sells BH (1985) Europ J Biochem 150:255–263

    Google Scholar 

  • Kaltschmidt E, Wittmann MG (1970) Anal Biochem 36:401–412

    Google Scholar 

  • Kruiswijk T, Planta RJ (1974) Mol Biol Rep 1:409–415

    Google Scholar 

  • Kruiswijk T, Planta RJ, Krop JM (1979) Biochim Biophys Acta 517:378–389

    Google Scholar 

  • Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ (1984a) FEBS Lett 175:371–376

    Google Scholar 

  • Leer RJ, van Raamsdonk-Duin MMC, Hagendoorn MJM, Mager WH, Planta RJ (1984b) Nucleic Acids Res 12:6685–6700

    Google Scholar 

  • Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ (1985) Curr Genet 9:273–277

    Google Scholar 

  • Mager WH, Planta RJ (1976) Europ J Biochem 62:193–197

    Google Scholar 

  • Maniatis T, Fritsch FF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Messing J (1982) In: Setlow JK, Hollaender A (eds) Genetic engineering, principles and methods, vol 4. Plenum Press, New York, pp 19–34

    Google Scholar 

  • Mets L, Bogorad L (1974) Anal Biochem 57:200–210

    Google Scholar 

  • Molenaar CMT (1984) PhD Thesis. Vrije Universiteit, Amsterdam

  • Nazar RN (1979) J Biol Chem 254:7724–7729

    Google Scholar 

  • Nazar RN, Wildeman AG (1983) Nucleic Acids Res 11:3155–3168

    Google Scholar 

  • Nomura M, Gourse R, Baughman G (1984) Annu Rev Biochem 53:57–117

    Google Scholar 

  • Pierandrei-Amaldi P, Beccari E, Bozzoni I, Amaldi F (1985) Cell 42:317–323

    Google Scholar 

  • Planta RJ, Mager WH (1982) In: Busch H, Rothblum L (eds) The cell nucleus, vol 12. Academic Press, New York London, pp 213–226

    Google Scholar 

  • Schaap PJ, Molenaar CMT, Mager WH, Planta RJ (1984) Curr Genet 9;47–52

    Google Scholar 

  • Shulman RW, Warner JR (1978) Mol Gen Genet 161:221–223

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Stoyanova BB, Hadjiolov AA (1979) Europ J Biochem 96:349–356

    Google Scholar 

  • Teem JL, Abovich N, Käufer NF, Schwindinger WF, Warner JR, Levy A, Woolford J, Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ, Schultz L, Friesen JD, Fried H, Rosbash M (1984) Nucleic Acids Res 12:8295–8312

    Google Scholar 

  • Udem SA, Warner JR (1972) J Mol Biol 65:227–242

    Google Scholar 

  • Waldron C, Jund R, Lacroute F (1974) FEBS Lett 46:11–16

    Google Scholar 

  • Warner JR (1982) In: Strathern JN, Jones EW, Breach JR (eds) The molecular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 529–560

    Google Scholar 

  • Warner JR, Mitra G, Schwindinger WF, Student M, Fried HM (1985) Mol Cell Ciol 5:1512–1521

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ElBaradi, T.T.A.L., van der Sande, C.A.F.M., Mager, W.H. et al. The cellular level of yeast ribosomal protein L25 is controlled principally by rapid degradation of excess protein. Curr Genet 10, 733–739 (1986). https://doi.org/10.1007/BF00405095

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00405095

Key words

Navigation