Skip to main content
Log in

CO2 fixation and translocation in benthic marine algae. III. Rates and ecological significance of translocation in Laminaria hyperborea and L. saccharina

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Translocation of 14C-labelled assimilates in Laminaria hyperborea and L. saccharina is strictly basipetal within the thallus. The lowermost 20 cm of the frond accumulates 71% (L. hyperborea) or 63% (L. saccharina) of the basipetallymoving translocate after a period of 96 h from initial feeding with NaH14CO3. Whereas translocation was found to occur at all seasons in L. saccharina, which grows throughout the year, no translocation of newly synthesized photosynthate occurred in L. hyperborea in October, when no frond enlargement takes place, nor in January, when the new fond occurs as a tiny outgrowth. In L. hyperborea, organic material, assimilated by the old frond during the period of rapid growth, is exported at the rate of 0.5 mg C · dm-2 · h-1. In L. saccharina, 14 to 18 cm frond length are necessary for an elongation rate of the growing zone, situated in lowermost 10 cm of the frond, of 1 cm per week. The significance of translocation in the two Laminaria species is demonstrated by comparison of export rates with growth rates measured in situ and in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Black, W. A. P.: The seasonal variation in weight and chemical composition of the common British Laminariaceae. J. mar. biol. Ass. U.K. 29, 45–72 (1950).

    Google Scholar 

  • Floc'h, J. Y. et M. Penot: Répartition préférentielle du phosphore et mouvements de redistribution du 32P chez quelques laminaires. C.r. hebd. Séanc. Acad. Sci., Paris 273, 1100–1103 (1971).

    Google Scholar 

  • —: Transport du 32P et du 86Rb chez quelques algues brunes: orientation des migrations et voies de conduction. Physiologie vég. 10, 677–686 (1972).

    Google Scholar 

  • Haug, A. and A. Jensen: Seasonal variation in the chemical composition of Alaria esculenta, Laminaria saccharina, Laminaria hyperborea and Laminaria digitata from Northern Norway. Rep. Norw. Inst. Seaweed Res. 4, 1–14 (1954).

    Google Scholar 

  • Hellebust, J. A. and A. Haug: Photosynthesis, translocation. and alginic acid synthesis in Laminaria digitata and Laminaria hyperborea. Can. J. Bot. 50, 169–176 (1972).

    Google Scholar 

  • Kain, J. M.: Aspects of the biology of Laminaria hyperborea. II. Age, weight and length. J. mar. biol. Ass. U.K. 43, 129–151 (1963).

    Google Scholar 

  • Kremer, B. P. und K. Schmitz: CO2-Fixierung und Stofftransport in benthischen marinen Algen. IV. Zur 14C-Assimilation einiger litoraler Braunalgen im submersen und emersen Zustand. Z. Pflanzenphysiol. 68, 357–363 (1973).

    Google Scholar 

  • — und J. Willenbrink: CO2-Fixierung und Stofftransport in benthischen marinen Algen. I. Zur Kinetik der 14CO2-Assimilation bei Laminaria saccharina. Planta 103, 55–64 (1972).

    Google Scholar 

  • Lüning, K.: Growth of amputated and dark-exposed individuals of the brown alga Laminaria hyperborea. Mar. Biol. 2, 218–223 (1969).

    Google Scholar 

  • —: Cultivation of Laminaria hyperborea in situ and in continuous darkness under laboratory conditions. Helgoländer wiss. Meeresunters. 20, 79–88 (1970).

    Google Scholar 

  • —: Seasonal growth of Laminaria hyperborea under recorded underwater light conditions near Helgoland. In: Proceedings of the Fourth European Marine Biology Symposium, pp 347–361. Ed. by D. J. Crisp. Cambridge: Cambridge University Press 1971.

    Google Scholar 

  • —, K. Schmitz and J. Willenbrink: Translocation of 14C-labelled assimilates in two Laminaria species. Int. Seaweed Symp. (Sapporo) 7, 420–425 (1972).

    Google Scholar 

  • Mann, K. H.: Ecological energetics of the seaweed zone in a marine bay on the Atlantic Coast of Canada. I. Zonation and biomass of seaweeds. Mar. Biol. 12, 1–10 (1972).

    Google Scholar 

  • Nicholson, N. L. and W. R. Briggs: Translocation of photosynthate in the brown alga Nereocystis. Am. J. Bot. 59, 97–106 (1972).

    Google Scholar 

  • Parke, M.: Studies on British Laminariaceae. I. Growth in Laminaria saccharina (L.). Lamour. J. mar. biol. Ass. U.K. 27, 651–709 (1948).

    Google Scholar 

  • Parker, B. C.: Translocation in the giant kelp Macrocystis. I. Rates, direction, quantity of C14-labeled products and fluorescein. J. Phycol. 1, 41–46 (1965).

    Google Scholar 

  • Sargent, M. C. and L. W. Lantrip: Photosynthesis, growth and translocation in a giant kelp. Am. J. Bot. 39, 99–107 (1952).

    Google Scholar 

  • Schmitz, K., K. Lüning und J. Willenbrink: CO2-Fixierung und Stofftransport in benthischen marinen Algen. II. Zum Ferntransport 14C-markierter Assimilate bei Laminaria hyperborea und Laminaria saccharina. Z. Pflanzenphysiol. 67, 418–429 (1972).

    Google Scholar 

  • Strickland, J. D. H. and T. R. Parsons: A practical handbook of seawater analysis, 311 pp. Ottawa: Fisheries Research Board of Canada 1968.

    Google Scholar 

  • Westlake, D. F.: Comparisons of plant productivity. Biol. Rev. 38, 385–426 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Hamburg

Dedicated to Professor Dr. Otto Stocker on his 85th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüning, K., Schmitz, K. & Willenbrink, J. CO2 fixation and translocation in benthic marine algae. III. Rates and ecological significance of translocation in Laminaria hyperborea and L. saccharina . Marine Biology 23, 275–281 (1973). https://doi.org/10.1007/BF00389334

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00389334

Keywords

Navigation