Skip to main content

Advertisement

Log in

Activity of the principal digestive enzymes in the detritivorous apodous holothuroid Leptosynapta galliennei and two other shallow-water holothuroids

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Digestive ability by means of hydrolytic enzyme activities was studied in Leptosynapta galliennei (Herapath, 1865) and two other shallow-water deposit-feeding holothuroids: L. inhaerens (O. F. Müller, 1776) and Holothuria (Panningothuria) forskali (Delle Chiaje, 1828). The holothuroids were collected throughout the year at Roscoff (Britanny, France) from 1980 to 1985, except for L. inhaerens, which was collected in Galway Bay (Ireland) in June/July 1980. Using 25 substrates, the activity of 21 enzymes were recorded to detect hydrolysis of esters (5 substrates), glycosidic bonds (12 substrates) and peptide bonds (8 substrates). The activities of the homogenates of various parts of the gut as well as the digestive juice were measured. Esters and relatively long-chained fatty acids (up to C14) were hydrolysed. Significant hydrolysis of naturally occurring disaccharides and starch (reserve carbohydrate) occurred. The holothuroids were also able to digest hydrolysis products of cellulose and chitin. This may also indicate a capacity to digest the products of complex compounds such as glycolipids or glyco-proteins. Exopeptidases capable of hydrolyzing peptides were present, but endopeptidases able to digest proteolytic chains were not. Most enzymatic activities occurred in all parts of the gut, but some were strictly localized, usually to the anterior intestine. Extracellular digestion of fatty acids, starch and saccharose occurred only in this latter digestive segment. Disaccharidases and peptidases are linked to the plasma membrane of enterocytes. Enzymatic activities associated with lysosomes occur throughout the gut. The diet of shallow-water holothuroids is omnivorous, with a marked preference for food of vegetable origin. Annelids and holothuroids possess a similar capacity to hydrolyse most types of bonds, including peptide bonds. The chemical nature of detritus and its relationship to the nutritional requirements of detritivores must be defined, and gut-retention time ascertained, to discover if different digestive strategies are developed by different detritivores to exploit the same food source in a given environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bakus, G. J. (1973). The biology and ecology of tropical holothurians. In: Jones O. A., Endean R. (eds.) Biology and geology of coral reef. II. Biology. New York, Academic Press, p. 325–367

    Google Scholar 

  • Baskys, B., Klein, E., Lever, W. F. (1963). Lipases of blood and tissues. III. Purification and properties of pancreatic lipase. Archs Biochem. Biophys. 102: 201–209

    Google Scholar 

  • Bensoussan, M. G., Scoditti, P.-M., Bianchi, A. J. M. (1984). Bacterial flora from echinoderm guts and associated sediment in the abyssal Vema Fault. Mar. Biol. 79: 1–10

    Google Scholar 

  • Bruner, R. L. (1964). Determination of reducing sugar: 3,5-dinitrosalicylic acid method. In: Whistler, R. L. et al. (eds.) Methods in carbonhydrate chemistry. Vol. IV. Academic Press, New York, p. 67–71

    Google Scholar 

  • Camacho, Z., Brown, J. R., Kitto, G. B. (1976). Structural studies on a starfish trypsin. Comp. Biochem. Physiol. 54B: 27–32

    Google Scholar 

  • Cammen, L. M. (1980). The significance of microbial carbon in the nutrition of the deposit feeding polychaete Nereis succinea. Mar. Biol. 61: 9–20

    Google Scholar 

  • Candy, D. J. (1980). Biological functions of carbohydrates. Blackie, Glasgow

    Google Scholar 

  • Choe, S. (1963). Biology of the Japanese common sea cucumber Stichopus japonicus Selenka. Ph.D. thesis, Pussa National University, South Korea

    Google Scholar 

  • Claereboudt, M., Jangoux, M. (1985). Conditions de digestion et activité de quelques polysaccharidases dans le tube digestif de l'oursin Paracentrotus lividus (Echinodermata). Biochem. Syst. Ecol. 13: 51–54

    Google Scholar 

  • Clifford, C., Walsh, J., Reidy, N., Johnson, D. B. (1982). Digestive enzymes and subcellular localization of disaccharidases in some echinoderms. Comp. Biochem. Physiol. 71B: 105–110

    Google Scholar 

  • Cohnheim, O. (1901). Versuche über Resorption, Verdauung und Stoffwechsel von Echinodermen. Hoppe Seyler's Z. physiol. Chem. 33: 9–54

    Google Scholar 

  • Dahlqvist, A. (1968). Assay of intestinal disaccharidases. Analyt. Biochem. 22: 99–107

    Google Scholar 

  • Das, P. K., Watts, R. L., Watts, D. C., Dimelow, E. J. (1971). Distribution, specificity and function of some proteases, general esterases and cholinesterases from several species of starfish. Comp. Biochem. Physiol. 39B: 979–997

    Google Scholar 

  • Enriques, P. (1902). Digestione, circulazione e assorbimento nelle oloturie. Archo zool. ital. 1: 1–58

    Google Scholar 

  • Erlanger, B. F., Kokowsky, N., Cohen, W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Archs Biochem. Biophys. 95: 271–278

    Google Scholar 

  • Farrand, A. L., Williams, D. C. (1988). Isolation, purification and partial characterization of four digestive proteases from the purple seastar Pisaster ochraceus. Mar. Biol. 97: 231–236

    Google Scholar 

  • Féral, J.-P. (1980). Cuticule et bactéries associées des épidermes digestif et tégumentaire de Leptosynapta galliennei (Herapath) (Holothurioidea-Apoda) — premières données. In: Jangoux, M. (ed.) Echinoderms: present and past. Balkema, Rotterdam, p. 285–290

    Google Scholar 

  • Féral, J.-P. (1985). Nutrition chez un invertébré marin détritivore: Leptosynapta galliennei (Holothuria: Echinodermata). Thèse de Doctorat d'État, Université Pierre et Marie Curie, Paris-6 et Muséum national d'Histoire Naturelle, Paris, Archives et documents, micro-édition SN 85 400 418, Muséum national d'Histoire naturelle, Paris

  • Féral, J.-P., Cherbonnier, G. (1986). Les holothuries. In: Guille, A., Laboute, P., Menou, J.-L. (eds.) Guide des étoiles de mer, oursins et autres échinodermes du lagon de Nouvelle-Calédonie. ORSTOM, Paris, p. 57–109

    Google Scholar 

  • Féral, J.-P. and C. Massin (1982). Digestive systems: Holothuroidea. In: Jangoux M., Lawrence, J. M. (eds.) Echinoderm nutrition. Balkema, Rotterdam, p. 191–212

    Google Scholar 

  • Fish, J. D. (1967). The digestive system of the holothurian Cucumaria elongata. II. Distribution of the digestive enzymes. Biol. Bull. mar. biol. Lab., Woods Hole 132: 354–361

    Google Scholar 

  • Hammond, L. S. (1983). Nutrition of deposit feeding holothuroids and echinoids (Echinodermata) from a shallow reef lagoon, Discovery Bay, Jamaica. Mar. Ecol. Prog. Ser. 10: 297–305

    Google Scholar 

  • Hansen, M. D. (1978). Nahrung und Fressverhalten bei Sedimentfressern dargestellt am Beispiel von Sipunculiden und Holothurien. Helgoländer wiss. Meeresunters. 31: 191–221

    Google Scholar 

  • Hartree, E. F. (1972). Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analyt. Biochem. 48: 422–427

    Google Scholar 

  • Holland, N. D., Nealson, K. H. (1978). The fine structure of the echinoderm cuticle and subcuticular bacteria of echinoderms. Acta zool., Stockh. 59: 169–185

    Google Scholar 

  • Hylleberg, J. (1975). Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia 14: 113–117

    Google Scholar 

  • Hylleberg Kristensen, J. (1972). Carbohydrates of some marine invertebrates with notes on their food and on the natural occurrence of the carbohydrates studied. Mar. Biol. 14: 130–142

    Google Scholar 

  • Jangoux, M. (1976). Structures et fonctions de nutrition chez les étoiles de mer (Echinodermata, Asteroidea). Thèse de doctorat, Université Libre de Bruxelles

  • Jangoux, M. (1982). Digestive systems: Asteroidea. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm nutrition. Balkema, Rotterdam, p. 235–272

    Google Scholar 

  • Johnson, D. B., O'Donoghue, G. V., Donlon, J. C. (1985). Soluble and membrane bound peptide hydrolases of Holothuria forskali. In: Keegan, B. F., O'Connor, B. D. S. (eds.) Proceedings of the 5th international Echinoderm Conference, Galway. Balkema, Rotterdam, p. 431–436

    Google Scholar 

  • Johnson, D. B., Rushe, B., Glynn, B., Canning, M., Smith, T. (1980). Hydrolases in the digestive tracts of some echinoderms. In: Jangoux, M. (ed.) Echinoderms: present and past. Balkema, Rotterdam, p. 313–317

    Google Scholar 

  • Jumars, P. A., Newell, R. C., Angel, M. V., Fowler, S. W., Poulet, S. A., Rowe, G. T., Smetacek, V. (1984). Detritivory. In: Fasham, M. J. R. (ed.) Flows of energy and materials in marine ecosystems, theory and practice. Plenum Press, New York, p. 685–693 (NATO Conference Series, Series IV: Marine Sciences)

    Google Scholar 

  • Kermack, D. M. (1955). The anatomy and physiology of the gut of the polychaete Arenicola marina L. Proc. zool. Soc. Lond. 125: 347–381

    Google Scholar 

  • Khripounoff, A., Sibuet, M. (1980). La nutrition d'échinodermes abyssaux. I. Alimentation des holothuries. Mar. Biol. 60: 17–26

    Google Scholar 

  • Krüger, F. (1971). Bau und Leben des Wattwurmes Arenicola marina. Helgoländer wiss. Meeresunters. 22: 149–200

    Google Scholar 

  • Lawrence, J. M. (1982). Digestion. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm nutrition. Balkema, Rotterdam, p. 283–329

    Google Scholar 

  • Léger, C. (1981). La lipase pancréatique. In: Fontaine, M. (ed.) Nutrition des poissons. CNRS, Paris, p. 69–77

    Google Scholar 

  • Lehninger, A. L. (1978). Biochemistry, the molecular basis of cell structure and function. Worth Publishers Incorporation, New York

    Google Scholar 

  • Lewis, D. B., Whitney, P. J. (1968). Cellulose in Nereis virens. Nature, Lond. 220: 603–604

    Google Scholar 

  • Liemans, M., Dandrifosse, G. (1972). Sécrétion d'amylase par la muqueuse intestinale isolée de quelques échinodermes. Archs int. Physiol. Biochim. 80: 853–860

    Google Scholar 

  • Longbottom, M. R. (1970). Distribution of the digestive enzymes in the gut of Arenicola marina. J. mar. biol. Ass. U.K. 50: 121–128

    Google Scholar 

  • Massin, C. (1978). Etude de la nutrition chez les holothuries aspidochirotes (Echinodermes). Comportement alimentaire, structure et fonctions de l'appareil digestif. Thèse de Doctorat, Université Libre de Bruxelles

  • Massin, C. (1980). The sediment ingested by Holothuria tubulosa Gmel. (Holothurioidea: Echinodermata). In: Jangoux, M. (ed.) Echinoderms: present and past. Balkema, Rotterdam, p. 205–208

    Google Scholar 

  • Massin, C. (1982). Food and feeding mechanisms: Holothurioidea. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm nutrition. Balkema, Rotterdam, p. 43–55

    Google Scholar 

  • Massin, C. (1984). Structures digestives d'holothuries Elasipoda (Echinodermata): Benthogone rosea Koehler, 1896 et Oneirophanta mutabilis Théel, 1879. Archs Biol., Bruxelles 95: 153–185

    Google Scholar 

  • Massin, C., Jangoux, M. (1976). Observations écologiques sur Holothuria tubulosa, H. poli et H. forskali (Echinodermata: Holothuroidea) et comportement alimentaire de H. tubulosa. Cah. Biol. mar. 17: 45–59

    Google Scholar 

  • McDonald, D. F., Schofield, B. H., Geffert, M. A., Coleman, R. A. (1980). A comparative study of new substrates for the histochemical demonstration of acid phosphomonoesterase activity in tissues which secrete acid phosphatase. J. Histochem. Cytochem. 28: 316–322

    Google Scholar 

  • McGettigan, S., Canning, M., O'Cuinn, G., Johnson, D. B. (1981). Peptide hydrolases in holothurian intestinal mucosa. Comp. Biochem. Physiol. 69C: 169–170

    Google Scholar 

  • Molodtsov, N. V., Vafina, M. G., Kim, A., Sundukova, E. V., Artyukon, A. A., Blinov, Y. G. (1974). Glycosidases of marine invertebrates from Posiet Bay, Bay of Japan. Comp. Biochem. Physiol. 48B: 463–470

    Google Scholar 

  • Monget, D. (1978) Mise au point d'une microméthode de détection et de mesure d'activités enzymatiques (API ZYM). Résultats obtenus dans differents domaines d'application. Thèse de docteur-ingénieur, Université de Lyon

  • Moriarty, D. J. W. (1982). Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Aust. J. mar. Freshwat. Res. 33: 255–263

    Google Scholar 

  • Nagel, W., Willig, F., Peschke, G., Schmidt, F. H. (1965). Über die Bestimmung von Trypsin and Chymotrypsin mit Aminosäure-p-nitroaniliden. Hoppe Seyler's Z. physiol. Chem. 340: 1–10

    Google Scholar 

  • Oomen, H. A. (1926). Verdauungsphysiologische Studien an Holothurien. Pubbl. Staz. zool. Napoli 7: 215–297

    Google Scholar 

  • Pawson, D. L. (1966). Ecology of holothurians. In: Boolootian, R. A. (ed.) Physiology of Echinodermata. Interscience Publ., New York, p. 63–71

    Google Scholar 

  • Ralijoana, C. J. (1983). Comparaison des communautés bactériennes des sédiments libres environnants et des sédiments en transit dans le tractus digestif d'échinodermes benthiques abyssaux. Thèse 3e cycle, Université d'Aix Marseille II

  • Ralijoana, C. J., Bianchi, A. (1982). Comparaison de la structure et des potentialités métaboliques des communautés bactériennes du contenu du tractus digestif d'holothuries abyssales et du sédiment environnant. Bull. Cent. Étud. Rech. scient. Biarritz 14: 199–214

    Google Scholar 

  • Rijken, M. (1979). Food and food uptake in Arenicola marina. Neth. J. Sea Res. 13: 406–421

    Google Scholar 

  • Rinderknecht, H., Geokas, M. C., Silverman, P., Haverback, B. J. (1968). A new ultrasensitive method for the determination of proteolytic activity. Clinica chim. Acta 21: 197–203

    Google Scholar 

  • Sawano, E. (1928). On the digestive enzymes of Caudina chilensis (J. Müller). Sci. Rep. Tôhoku Univ. 4: 205–218

    Google Scholar 

  • Sibuet, M. (1977). Répartition et diversité des échinodermes (holothuries, astérides) en zone profonde dans le golfe de Gascogne. Deep-Sea Res. 24: 549–563

    Google Scholar 

  • Sibuet, M. (1984). Les invertébrés détritivores dans l'écosystème abyssal. Sélection de la nourriture et régime alimentaire chez les holothuries. Océanis 10: 623–639

    Google Scholar 

  • Sibuet, M., Khripounoff, A., Deming, J., Colwell, R., Dinet, A. (1982). Modifications of the gut contents in the digestive tract of abyssal holothurians. In: Lawrence, J. M. (ed.) International echinoderms conference, Tampa Bay. Balkema, Rotterdam, p. 421–428

    Google Scholar 

  • Sloan, N. A., Von Bodungen, B. (1980). Distribution and feeding of the sea cucumber Isostichopus badionotus in relation to shelter and sediment criteria of the Bermuda platform. Mar. Ecol. Prog. Ser. 2: 257–264

    Google Scholar 

  • Trefz, S. M. (1958). The physiology of digestion of Holothuria atra Jäger with special reference to its role in the ecology of coral reefs. Ph.D. dissertation, University of Hawaii

  • Van der Heyde, H. C. (1922). On the physiology of digestion, respiration and excretion in echinoderms. Dissertation. Den Helder, C. de Boer Jr., Amsterdam (Cited in Oomen 1926)

  • Vonk, H. J. (1962). Emulgators in the digestive fluids in invertebrates. Archs int. Physiol. Biochim. 70: 67–85

    Google Scholar 

  • Walker, K. R., Bambach, R. K. (1974). Feeding by benthic invertebrates: classification and terminology for paleoecological analysis. Lethaia 7: 67–78

    Google Scholar 

  • Yokoe, Y., Yasumasu, I. (1964). The distribution of cellulase in invertebrates. Comp. Biochem. Physiol. 13: 323–338

    Google Scholar 

  • Yingst, J. Y. (1982). Factors influencing rates of sediment ingestion by Parastichopus parvimensis (Clark), an epibenthic deposit-feeding holothurian. Estuar., cstl Shelf Sci. 14: 119–134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Féral, JP. Activity of the principal digestive enzymes in the detritivorous apodous holothuroid Leptosynapta galliennei and two other shallow-water holothuroids. Marine Biology 101, 367–379 (1989). https://doi.org/10.1007/BF00428133

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00428133

Keywords

Navigation