Skip to main content
Log in

Anaerobic degradation of trans-cinnamate and ω-phenylalkane carboxylic acids by the photosynthetic bacterium Rhodopseudomonas palustris: evidence for a β-oxidation mechanism

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The mechanism responsible for the initial steps in the anaerobic degradation of trans-cinnamate and ω-phenylalkane carboxylates by the purple non-sulphur photosynthetic bacterium Rhodopseudomonas palustris was investigated. Phenylacetate did not support growth and there was a marked CO2 dependence for growth on acids with greater side-chain lengths. Here, CO2 was presumably acting as a redox sink for the disposal of excess reducing equivalents. Growth on benzoate did not require the addition of exogenous CO2. Aromatic acids with an odd number of side-chain carbon atoms (3-phenylpropionate, 5-phenylvalerate, 7-phenylheptanoate) gave greater apparent molar growth yields than those with an even number of side-chain carbon atoms (4-phenylbutyrate, 6-phenylhexanoate, 8-phenyloctanoate). HPLC analysis revealed that phenylacetate accumulated and persisted in the culture medium during growth on these latter compounds. Cinnamate and benzoate transiently accumulated in the culture medium during growth on 3-phenylpropionate, and benzoate alone accumulated transiently during the course of trans-cinnamate degradation. The transient accumulation of 4-phenyl-2-butenoic acid occurred during growth on 4-phenylbutyrate, and phenylacetate accumulated to a 1:1 molar stoichiometry with the initial 4-phenylbutyrate concentration. It is proposed that the initial steps in the anaerobic degradation of trans-cinnamate and the group of acids from 3-phenylpropionate to 8-phenyloctanoate involves β-oxidation of the side-chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3-PP:

3-phenylpropionic acid

4-PB:

4-phenylbutyric acid

5-PV:

5-phenylvaleric acid

6-PH:

6-phenylhexanoic acid

7-PH:

7-phenylheptanoic acid

8-PO:

8-phenyloctanoic acid

4-P2B:

4-phenyl-2-butenoic acid

GC/MS:

Gas chromatography/Mass spectrometry

HPLC:

High-pressure liquid chromatography

References

  • Balba MT, Evans WC (1977) The methanogenic fermentation of aromatic compounds. Biochem Soc Trans 5: 302–304

    Article  CAS  PubMed  Google Scholar 

  • Balba MT, Evans WC (1979) The methanogenic fermentation of ω-phenyl alkane carboxylic acids. Biochem Soc Trans 7: 403–405

    Article  CAS  PubMed  Google Scholar 

  • Colberg PJ (1988) Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley-Interscience, Chichester, pp 333–372

    Google Scholar 

  • Dagley S (1984) Microbial metabolism of aromatic compounds. In: Cooney CL, Humphrey AE (eds) Comprehensive Biotechnology, vol. 1. Pergamon Press, Oxford, pp 483–505

    Google Scholar 

  • Dangel W, Brackman R, Lack A, Mohamed M, Koch J, Oswald B, Seyfried B, Tschech A, Fuchs G (1991) Differential expression of enzyme activities initiating anoxic metabolism of various aromatic compounds via benzoyl-CoA. Arch Microbiol 155: 256–262

    Article  CAS  Google Scholar 

  • Dutton PL, Evans WC (1968) The photometabolism of benzoic acid by Rhodopseudomonas palustris: a new pathway of aromatic ring metabolism. Biochem J 109: 5P

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutton PL, Evans WC (1969) The metabolism of aromatic compounds by Rhodopseudomonas palustris. Biochem J 113: 525–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans WC, Fuchs G (1988) Anaerobic degradation of aromatic compounds. Ann Rev Microbiol 42: 289–317

    Article  CAS  Google Scholar 

  • French CJ, Vance CP, Neil Towers GH (1976) Conversion of p-coumaric acid to p-hydroxybenzoic acid by cell free extracts of potato tubers and Polyporus hispidus. Phytochem 15: 564–566

    Article  CAS  Google Scholar 

  • Geissler JF, Harwood CS, Gibson J (1988) Purification and properties of benzoate-coenzyme A ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. J Bacteriol 170: 1709–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross GG, Zenk MH (1974) Isolation and properties of hydroxycinnamate: CoA ligase from lignifying tissues of Forsythia. Eur J Biochem 42: 453–459

    Article  CAS  PubMed  Google Scholar 

  • Guyer M, Hegeman G (1969) Evidence for a reductive pathway for the anaerobic metabolism of benzoate. J Bacteriol 99: 906–907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagel P, Kindl H (1975) p-Hydroxybenzoate Synthase: a complex associated with mitochondrial membranes of roots of Cucumis sativus. FEBS Lett 59: 120–124

    Article  CAS  PubMed  Google Scholar 

  • Harwood CS, Gibson J (1986) Uptake of benzoate by Rhodopseudomonas palustris grown anaerobically in light. J Bacteriol 165: 504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harwood CS, Gibson J (1988) Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Appl Environ Microbiol 54: 712–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Healy JB JR, Young LY, Reinhard M (1980) Methanogenic decomposition of ferulic acid, a model lignin derivative. Appl Environ Microbiol 39: 436–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hillmer P, Gest H (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129: 724–731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutber GN, Ribbons DW (1983) Involvement of coenzyme A esters in the metabolism of benzoate and cyclohexanecarboxylate by Rhodopseudomonas palustris. J Gen Microbiol 129: 2413–2420

    CAS  Google Scholar 

  • Imhoff-Stuckle D, Pfennig N (1983) Isolation and characterisation of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 136: 194–198

    Article  CAS  Google Scholar 

  • Lascelles J (1960) The formation of ribulose-1,5-diphosphate carboxylase by growing cultures of Athiorhodaceae. J Gen Microbiol 23: 499–510

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Gest H (1988) Selective enrichment and isolation of Rhodopseudomonas palustris using trans-cinnamic acid as sole carbon source. FEMS Microbiol Ecol 53: 53–58

    Article  CAS  Google Scholar 

  • vanNiel CB (1944) The culture, general physiology, morphology and classification of the non-sulphur purple bacteria. Bacteriol Rev 8: 1–118

    PubMed  PubMed Central  Google Scholar 

  • Richardson DJ, King GF, Kelly DJ, McEwan AG, Ferguson SJ, Jackson JB (1988) The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate. Arch Microbiol 150: 131–137

    Article  CAS  Google Scholar 

  • Schennen U, Braun K, Knackmuss HJ (1985) Anaerobic degradation of 2-fluorobenzoate by benzoate-degrading denitrifying bacteria. J Bacteriol 161: 321–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seyfried B, Tschech A, Fuchs G (1991) Anaerobic degradation of phenylacetate and 4-hydroxyphenylacetate by denitrifying bacteria. Arch Microbiol. 155: 249–255

    Article  CAS  Google Scholar 

  • Shlomi ER, Lankhorst A, Prins RA (1978) Methanogenic fermentation of benzoate in an enrichment culture. Microbiol Ecol 4: 249–261

    Article  CAS  Google Scholar 

  • Toms A, Wood JM (1970) The degradation of trans-ferulic acid by Pseudomonas acidovorans. Biochem 9: 337–343

    Article  CAS  Google Scholar 

  • Weaver PF, Wall JD, Gest H (1975) Characterisation of Rhodopseudomonas capsulata. Arch Microbiol 105: 207–216

    Article  CAS  PubMed  Google Scholar 

  • Webley DM, Duff RB, Farmer VC (1955) Beta-oxidation of fatty acids by Nocardia opaca. J Gen Microbiol 13: 361–369

    Article  CAS  PubMed  Google Scholar 

  • Whittle PJ, Lunt DO, Evans WC (1976) Anaerobic photometabolism of aromatic compounds by Rhodopseudomonas sp. Biochem Soc Trans 4: 490–491

    Article  CAS  PubMed  Google Scholar 

  • Zenk MH (1966) Biosynthesis of C6−C1 compounds. In: Billek G (ed) Biosynthesis of aromatic compounds. Proceedings of the 2nd meeting of the Federation of European Biochemical Societies, vol 3. Pergamon Press, Oxford, pp 45–60, presented 1964

    Chapter  Google Scholar 

  • Zenk MH (1978) Recent work on cinnamoyl CoA derivatives. In: Swain T, Harborne JB, VanSumere CF (eds) Recent advances in biochemistry, vol 12. Plenum Press, New York, pp 139–176

    Google Scholar 

  • Zenk MH, Ulbrich B, Busse J, Stockigt J (1980) Procedure for the enzymatic synthesis and isolation of cinnamoyl-CoA thiolesters using a bacterial system. Anal Biochem 101: 182–187

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elder, D.J.E., Morgan, P. & Kelly, D.J. Anaerobic degradation of trans-cinnamate and ω-phenylalkane carboxylic acids by the photosynthetic bacterium Rhodopseudomonas palustris: evidence for a β-oxidation mechanism. Arch. Microbiol. 157, 148–154 (1992). https://doi.org/10.1007/BF00245283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245283

Key words

Navigation