Skip to main content
Log in

Hydrogen uptake deficient mutants of Rhodopseudomonas capsulata

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Mutants of Rhodopseudomonas capsulata lacking uptake hydrogenase activity have been isolated among those unable to grow photoautotrophically. Studies with these mutants showed increases in nitrogenase mediated H2 production from all substrates tested. In addition, photosynthetic synthetic growth on N2 with malate as carbon source was not affeced by the block in H2 uptake even under low light. Under these growth conditions hydrogen was observed to accumulate in mutant but not in wild-type cultures. This finding suggested that H2 was evolved by nitrogenase during N2 fixation by this photosynthetic bacterium and was efficiently recycled in the wild type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams MWW, Hall DO (1979) Properties of the solubilized membranebound hydrogenase from the photosynthetic bacterium Rhodospirillum rubrum. Arch Biochem Biophys 195:288–299

    Google Scholar 

  • Bothe H, Tennigkeit J, Eisbrenner G, Yates MG (1977) The hydrogenase-nitrogenase relationship in the blue-green algae Anabaena cylindrica. Planta (Berlin) 133:237–242

    Google Scholar 

  • Colbeau A, Chabert J, Vignais PM (1978) Hydrogenase activity in Rhodopseudomonas capsulata. Stability and stabilization of the solubilized enzyme. In: Schlegel HG, Schneider K (eds) Hydrogenases: their catalytic activity, structure and function. Goltze, Göttingen, pp 183–197

    Google Scholar 

  • Colbeau A, Kelley BC, Vignais PM (1980) Hydrogenase activity in Rhodopseudomonas capsulata: relationship with nitrogenase activity. J Bacteriol 144:141–148

    Google Scholar 

  • Colbeau A, Vignais PM (1981) The membrane-bound hydrogenase of Rhodopseudomonas capsulata: stability and catalytic properties. Biochim Biophys Acta 662:271–284

    Google Scholar 

  • Dixon ROD (1967) Hydrogen uptake and exchange by pea root nodules. Ann Bot 31:179–188

    Google Scholar 

  • Dixon ROD (1972) Hydrogenase in legume root nodule bacteroids. Occurrence and properties. Arch Mikrobiol 85:193–201

    Google Scholar 

  • Emerich DW, Ruiz-Argüeso T, Russell SA, Evans HJ (1979) Hydrogendependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids. J Bacteriol 137:153–160

    Google Scholar 

  • Gest H, Kamen MD (1949) Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109:558–559

    Google Scholar 

  • Hillmer P, Gest H (1977a) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129:724–731

    Google Scholar 

  • Hillmer P, Gest H (1977b) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J Bacteriol 129:732–739

    Google Scholar 

  • Kamen MD, Gest H (1949) Evidence for a nitrogenase system in the photosynthetic bacterium Rhodospirillum rubrum. Science 109:560.

    Google Scholar 

  • Kelley BC, Meyer CM, Gandy C, Vignais PM (1977) Hydrogen recycling by Rhodopseudomonas capsulata. FEBS Lett 81:281–285

    Google Scholar 

  • Klemme JH (1969) Reaktionen der Hydrogenase aus Rhodopseudomonas capsulata im partikelgebundenen und gelösten Zustand. Z Naturforschg 246:603–612

    Google Scholar 

  • Krasna AI (1978) Oxygen-stable hydrogenase and assay. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 53. Academic Press, New York London, pp 296–314

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Madigan MT, Gest H (1979) Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol 137:524–530

    Google Scholar 

  • Marrs B (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 71:971–973

    Google Scholar 

  • Meynell GG, Meynell E (1970) Theory and practice in experimental bacteriology, 2nd ed. Cambridge University Press, London New York Melbourne

    Google Scholar 

  • Neilson AH, Nordlund S (1975) Regulation of nitrogenase synthesis in intact cells of Rhodospirillum rubrum: inactivation of nitrogen fixation by ammonia, l-glutamine, and l-asparagine. J Gen Microbiol 91:53–62

    Google Scholar 

  • Odom JM, Wall JD (1983) Photoproduction of H2 from cellulose by an anaerobic bacterial coculture. Appl Environ Microbiol 45:1300–1305

    Google Scholar 

  • Ormerod JG, Gest H (1962) Hydrogen, photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bacteriol Rev 26:51–66

    Google Scholar 

  • Paul F, Colbeau A, Vignais PM (1979) Phosphorylation coupled to H2 oxidation by chromatophores from Rhodopseudomonas capsulata. FEBS Lett 106:29–33

    Google Scholar 

  • Rivera-Ortiz JM, Burris RH (1975) Interactions among substrates and inhibitors of nitrogenase. J Bacteriol 123:537–545

    Google Scholar 

  • Schick H-J (1971) Regulation of photoreduction in Rhodospirillum rubrum by ammonia. Arch Mikrobiol 75:110–120

    Google Scholar 

  • Schultz JE, Weaver PF (1982) Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J Bacteriol 149:181–190

    Google Scholar 

  • Siefert E, Pfennig N (1978) Hydrogen metabolism and nitrogen fixation in wild-type and Nif- mutants of Rhodopseudomonas acidophila. Biochimie 60:261–265

    Google Scholar 

  • Smith LA, Hill S, Yates MG (1976) Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria. Nature 262:209–210

    Google Scholar 

  • Sweet WJ, Burris RH (1981) Inhibition of nitrogenase activity by HN +4 in Rhodospirillum rubrum. J Bacteriol 145:824–831

    Google Scholar 

  • Sweet WJ, Houchins JP, Rosen PR Arp DJ (1980) Polarographic measurement of H2 in aqueous solutions. Anal Biochem 107:337–340

    Google Scholar 

  • Takakuwa S, Wall JD (1981) Enhancement of hydrogenase activity in Rhodopseudomonas capsulata by nickel. FEMS Microbiol Lett 12:359–363

    Google Scholar 

  • Walker CC, Yates MG (1978) The hydrogen cycle in nitrogen-fixing Azotobacter chroococcum. Biochimie 60:225–232

    Google Scholar 

  • Wall JD, Johansson BC, Gest H (1977) A pleiotropic mutant of Rhodopseudomonas capsulata defective in nitrogen metabolism. Arch Microbiol 115:259–263

    Google Scholar 

  • Wall JD, Weaver PF, Gest H (1975) Genetic transfer of nitrogenasehydrogenase activity in Rhodopseudomonas capsulata. Nature 258:630–631

    Google Scholar 

  • Weaver PF, Lien S, Siebert M (1980) Photobiological production of hydrogen. Solar Energy 24:3–45

    Google Scholar 

  • Zürrer H, Bachofen R (1979) Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 37:789–793

    Google Scholar 

  • Zumft WG, Castillo F (1978) Regulatory properties of the nitrogenase from Rhodopseudomonas palustris. Arch Microbiol 117:53–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takakuwa, S., Odom, J.M. & Wall, J.D. Hydrogen uptake deficient mutants of Rhodopseudomonas capsulata . Arch. Microbiol. 136, 20–25 (1983). https://doi.org/10.1007/BF00415604

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00415604

Key words

Navigation