Skip to main content
Log in

Transformation between SLR/VLBI and WGS-84 reference frames

  • Published:
Bulletin géodésique Aims and scope Submit manuscript

Abstract

In geodetic and geophysical applications of GPS, it is important to realize the ephemerides of the GPS satellites and the coordinates of station positions in a consistent reference system. At present, more than one reference system is being used by various GPS users depending on their specific applications. The WGS-84 and various reference frames based on satellite laser ranging (SLR), very long baseline interferometry (VLBI), or a combination of SLR and VLBI are the most commonly used in high precision geophysical applications. The WGS-84 is widely used in applications which rely on the GPS broadcast ephemeris. Station coordinates estimated in one system may have to be transformed to another for further use or for evaluation/comparison purposes. This paper presents a seven-parameter transformation between the WGS-84 and SLR/VLBI reference frames. The GPS double-differenced phase measurements for two consecutive weeks from a set of five Defense Mapping Agency (DMA) sites (defined in the WGS-84 frame) and from an augmented set of fifteen CIGNET sites (defined in the SLR/VLBI frame) were processed in a least squares estimation scheme to determine station coordinates, from which the transformation parameters were determined. A scale difference of about 0.2 ppm and an orientation difference in longitude of about 31 milliarcseconds were found to be the only parameters of significance between the adopted SLR/VLBI and the WGS-84 frames. Transformation between WGS-84 and the ITRF90 is also included, in which the scale difference is the same as before but the longitude rotation is about 16 mas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abusali, P.A.M., B. E. Schutz, H. Fliegel, and A. Lin, Coordinate reference frame compatibility between VLBI/SLR system and WGS-84,Proc. Fifth International Geodetic Symposium on Satellite Positioning, Las Cruces, New Mex., March 13–17, 1989.

  • Blewitt, G., Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km,J. Geophys. Res., 94(B8), 10187–10203, August 1989.

    Article  Google Scholar 

  • Caprette, D., C. Ma, and J. W. Ryan, Crustal Dynamics Project data analysis-1990: VLBI geodetic results, 1979–89,NASA Tech. Memo. 100765, Greenbelt, MD, 1990.

  • Dallas, S. S., Equations of motion for rotating finite bodies in the extended PPN formalism,Celest. Mech., 15, 111–123, 1977.

    Article  Google Scholar 

  • Decker, B. L., World Geodetic System 1984,Proc. Fourth International Symposium on Satellite Positioning, Austin, Texas, April 28–May 2, 1986.

  • Defense Mapping Agency,Department of Defense World Geodetic System 1984, DMA TR 8350.2-B, Washington, D.C., September 1987a.

  • Defense Mapping Agency,Supplement to Department of Defense World Geodetic System 1984 Technical Report — Part I: Methods, Techniques, and Data Used in WGS-84 Development, DMA TR 8350.2-A, Washington, D.C., 1987b.

  • DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Current plate motions,Geophys. J. Int., 101, 425–478, 1990.

    Article  Google Scholar 

  • Fliegel, H. F., W. A. Feess, W. C. Layton, and N. W. Rhodus, The GPS radiation force model,Proc. First International Symp. on Precise Positioning with the Global Positioning System, NOAA, Rockville, MD, 1985.

    Google Scholar 

  • IERS,International Earth Rotation Service Annual Report for 1990, Observatoire de Paris, Paris, France, 1991.

    Google Scholar 

  • IERS,International Earth Rotation Service Annual Report for 1992, Observatoire de Paris, Paris, France, 1993.

    Google Scholar 

  • Lichten, S. M., and W. I. Bertiger, Demonstration of submeter GPS orbit determination and 1.5 parts in 108 three-dimensional baseline accuracy,Bull. Geod., 63, 167–189, 1989.

    Article  Google Scholar 

  • Lieske, J. H., Precession matrix based on IAU (1976) system of astronomical constants,Astron. Astrophys., 73, 282–284, 1979.

    Google Scholar 

  • Marsh, J.G., F.J. Lerch, B.H. Putney, D.C. Christodoulidis, D.E. Smith, T.L. Felsentreger, B.V. Sanchez, S.M. Klosko, E.C. Pavlis, T.V. Martin, J. W. Robbins, R. G. Williamson, O. L. Colombo, D. D. Rowlands, W. F. Eddy, N. L. Chandler, K. E. Rachlin, G.B. Patel, S. Bhati, and D.S. Chin, A new gravitational model for the Earth from satellite tracking data: GEM-1,J. Geophys. Res., 93(B6), 6169–6215, June 10, 1988.

    Article  Google Scholar 

  • Minster, J. B., and T. H. Jordan, Present-day plate motions,J. Geophys. Res., 83, 5331–5354, 1978.

    Article  Google Scholar 

  • Murray, M., and R. King, SV-3 coordinates of GPS receivers, MIT Tech. Memo., Mass. Inst. of Tech., Cambridge, Mass., 1988.

    Google Scholar 

  • Porter, W. W.,Solar Force-Torque Model for the GPS Space Vehicle System, Rockwell International, Space Division, Downey, Calif., January 15, 1976.

    Google Scholar 

  • Ray, J. R., C. Ma, J. W. Ryan, T. A. Clark, R. J. Eanes, M. M. Watkins, B. E. Schutz, and B. D. Tapley, Comparison of VLBI and SLR geocentric site coordinates,Geophys. Res. Lett., 18(2), 231–234, Feb. 1991.

    Article  Google Scholar 

  • Schutz, B. E., Earth rotation from Lageos laser ranging,IERS Tech. Note 2, 53–57, Observatoire de Paris, Paris, France, 1989.

    Google Scholar 

  • Schutz, B. E., C. S. Ho, P.A.M. Abusali, and B. D. Tapley, CASA UNO GPS orbit and baseline experiments,Geophys. Res. Lett., 17(5), 643–646, April 1990.

    Article  Google Scholar 

  • Standish, E. M., Orientation of the JPL ephemerides, DE200/LE200, to the dynamical equinox of J2000,Astron. Astrophys., 114, 297–302, 1982.

    Google Scholar 

  • Wahr, J. M., Body tides on an elliptical, rotating, elastic and oceanless Earth,Geophys. J. R. Astron. Soc., 64, 677–703, 1981a.

    Google Scholar 

  • Wahr, J. M., The forced nutation of an elliptical, rotating, elastic and oceanless Earth,Geophys. J. R. Astron. Soc., 64, 705–727, 1981b.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abusali, P.A.M., Schutz, B.E., Tapley, B.D. et al. Transformation between SLR/VLBI and WGS-84 reference frames. Bulletin Géodésique 69, 61–72 (1995). https://doi.org/10.1007/BF00819552

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00819552

Keywords

Navigation