Skip to main content
Log in

Structure–Metabolism Relationships in the Hydrolysis of Nicotinate Esters by Rat Liver and Brain Subcellular Fractions

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Rat liver and brain subcellular esterase activities toward nicotinic acid esters were studied, under varying conditions, such as pH, organic solvents, protein concentration, duration of incubation, and substrate concentration. Esterases in each subcellular fraction displayed activities that obey Michaelis–Menten kinetics, although subcellular fractions are heterogeneous. The K m values were of the same magnitude, and the V max values were lower in microsomes than in cytosol of the liver. Brain activities normalized to protein concentration, were much lower than liver activities, aromatic nicotinates being the best substrates in both tissues. Myelin and brain mitochondria of nerve-ending and neuroglial origin display esterase activity toward phenyl nicotinate. In contrast to brain esterases, liver esterases appear homogeneous, and esterase activities in both tissues react differently to changes in pH. Qualitative and quantitative structure–metabolism relationships are not suggestive of tissue-specific ester hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Weiner and J. van Eys. Nicotinic Acid, Nutrient-Cofactor-Drug, Marcel Dekker, New York and Basel, 1983.

    Google Scholar 

  2. A. Subissi, M. Criscuoli, M. Biagi, and W. Murmann. Acute effects on plasma lipids in the rat of a long-acting nicotinic acid derivative. J. Pharm. Pharmacol. 35:571 (1983).

    Google Scholar 

  3. E. Heymann. Carboxylesterases and amidases. In W. B. Jakoby, R. R. Bend, and J. Caldwell (eds.), Enzymatic Basis of Detoxication, Academic Press, New York, 1980, Vol. 2, pp. 291–323.

    Google Scholar 

  4. J. D. Ecobichon. Properties and classification of the soluble esterases of human brain. Can. J. Physiol. Pharmacol. 44:225 (1966).

    Google Scholar 

  5. S. M. Loriaux, J. B. Deijen, J. F. Orlebeke, and J. H. De Swart. The effects of nicotinic acid and xanthinol nicotinate on human memory in different categories of age. Psychopharmacology 87:390 (1985).

    Google Scholar 

  6. B. H. J. Hofstee. Specificity of esterases. IV. Behavior of horse liver esterase towards a homologous series of n-fatty acid esters. J. Biol. Chem. 207:219 (1954).

    Google Scholar 

  7. M. Inoue, M. Morikawa, M. Tsuboi, and M. Sugiura. Studies of human intestinal esterase. IV. Application to the development of ester prodrugs of salicylic acid. J. Pharm. Dyn. 2:229 (1979).

    Google Scholar 

  8. K. Hattori, M. Kamio, E. Nakajima, T. Oshima, T. Satoh, and H. Kitagawa. Characterization of steroid hormone ester hydrolyzing enzymes in liver microsomes. Biochem. Pharmacol. 30:2051 (1981).

    Google Scholar 

  9. G. Maksay and L. Otvös. Activation of prodrugs: Structure-pharmacokinetics correlations of benzodiazepine esters. Drug Metab. Rev. 14:1165 (1983).

    Google Scholar 

  10. K. Kawaguchi, Y. Suzuki, Y. Nakahara, N. Nambu, and T. Nagai. Activity of esterase in the hydrolysis of 3′,5′-diesters of 5-fluoro-2′-deoxyuridine in relation to the structure of the diester prodrug. Chem. Pharm. Bull. 33:301 (1985).

    Google Scholar 

  11. J. N. Jacob, V. E. Shashoua, A. Campbell, and R. J. Baldessarini. γ-Aminobutyric acid esters. 2. Synthesis, brain uptake, and pharmacological properties of lipid esters of γ-aminobutyric acid. J. Med. Chem. 28:106 (1985).

    Google Scholar 

  12. N. M. Nielsen and H. Bundgaard. Prodrugs as drug delivery systems. 68. Chemical and plasma-catalyzed hydrolysis of various esters of benzoic acid: A reference system for designing prodrug esters of carboxylic acid agents. Int. J. Pharm. 39:75 (1987).

    Google Scholar 

  13. C. Altomare, A. Carotti, S. Cellamare, M. Ferappi, R. Cagiano, and G. Renna. QSAR analysis of chemical and serum-catalyzed hydrolysis of phenylester prodrugs of nipecotic acid. Int. J. Pharm. 48:91 (1988).

    Google Scholar 

  14. D. Reymond, G. N. Chung, J. M. Mayer, and B. Testa. Lipophilicity measurements of nicotinates by reversed-phase high-performance liquid chromatography. J. Chromatogr. 391:97 (1987).

    Google Scholar 

  15. G. N. Wernly-Chung, J. M. Mayer, A. Tsantili-Kakoulidou, and B. Testa. Structure-reactivity relationships in the chemical hydrolysis of prodrug esters of nicotinic acid. Int. J. Pharm. 63:129 (1990).

    Google Scholar 

  16. H. W. Strobel and J. D. Dignam. Purification and properties of NADPH-cytochrome P-450 reductase. In S. E. Fleischer (ed.), Methods in Enzymology, Academic Press, New York, 1980, Vol. 52, pp. 89–96.

    Google Scholar 

  17. B. Walther, J.-F. Ghersi-Egea, Z. Jayyosi, A. Minn, and G. Siest. Ethoxyresorufin O-deethylase activity in rat brain subcellular fractions. Neurosci. Lett. 76:58 (1987).

    Google Scholar 

  18. B. Walther, J.-F. Ghersi-Egea, A. Minn, and G. Siest. Subcellular distribution of cytochrome P-450 in the brain. Brain Res. 375:338 (1986).

    Google Scholar 

  19. O. H. Lowry, N. J. Rosebrough, L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265 (1951).

    Google Scholar 

  20. A. Durrer, B. Walther, A. Racciatti, and B. Testa. Convenient method for the analysis of nicotinic acid as a metabolite of nicotinate esters in various tissue homogenates. J. Chromatogr. 495:256 (1989).

    Google Scholar 

  21. R. D. Cramer III, J. D. Bunce, D. E. Patterson, and I. E. Frank. Crossvalidation, bootstrapping and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct.-Act. Relat. 7:18 (1988).

    Google Scholar 

  22. D. L. Barker and W. P. Jencks. Pig liver esterase: Some kinetic properties. Biochemistry 8:3890 (1969).

    Google Scholar 

  23. J. K. Stoops, D. J. Horgan, M. T. C. Runnegar, J. de Jersey, E. C. Webb, and B. Zerner. Kinetic studies on carboxylesterases. Biochemistry 8:2026 (1969).

    Google Scholar 

  24. A. Boecking, C. Grossarth, and O. von Deimling. Biochemical and histochemical investigations of the subcellular location of non-specific esterase. Histochemistry 42:359 (1974).

    Google Scholar 

  25. B. Ali and S. Kaur. Mammalian tissue acetylsalicylic acid esterases: Identification, distribution and discrimination from other esterases. J. Pharm. Exp. Ther. 226:589 (1983).

    Google Scholar 

  26. O. von Deimling and A. Boecking. Esterases in histochemistry and ultrahistochemistry. Histochem. J. 8:215 (1976).

    Google Scholar 

  27. Y. Eto and K. Suzuki. Cholesterol ester metabolism: A cholesterol ester hydrolase specifically localized in the myelin sheath. J. Biol. Chem. 248:1986 (1973).

    Google Scholar 

  28. M. Igarashi and K. Suzuki. Solubilization and characterization of the rat brain cholesterol ester hydrolase localized in the myelin sheath. J. Neurochem. 28:729 (1977).

    Google Scholar 

  29. M. G. Rumsby, H. M. Getliffe, and P. J. Riekkinen. On the association of the non-specific esterase activity with central nerve myelin preparation. J. Neurochem. 32:607 (1973).

    Google Scholar 

  30. H. van de Waterbeemd and B. Testa. The parametrization of lipophilicity and other structural properties in drug design. In B. Testa (ed.), Advances in Drug Research, Academic Press, London, New York, 1987, pp. 85–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durrer, A., Walther, B., Racciatti, A. et al. Structure–Metabolism Relationships in the Hydrolysis of Nicotinate Esters by Rat Liver and Brain Subcellular Fractions. Pharm Res 8, 832–839 (1991). https://doi.org/10.1023/A:1015839109449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015839109449

Navigation