Skip to main content
Log in

Particle Size Dependent Molecular Rearrangements During the Dehydration of Trehalose Dihydrate-In Situ FT-Raman Spectroscopy

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. (1) To characterise the different phases of trehalose using FT-Raman spectroscopy. (2) To monitor the changes in the structure of trehalose dihydrate on isothermal heating at 80°C.

Methods. Different phases of trehalose were prepared and FT-Raman spectra obtained. Trehalose dihydrate was sieved to <45 μm and >425 μm particle size fractions and FT-Raman spectra were obtained at various time intervals during heating at 80°C.

Results. During heating at this temperature, the spectra of a <45 μm particle size fraction showed a loss of peak resolution with time and after 210 minutes resembled the spectrum of amorphous trehalose prepared by lyophilisation, indicating that the material was rendered amorphous by heating. In contrast, spectra obtained from a >425 μm particle size fraction altered with time and became characteristic of the crystalline anhydrate. The approximate kinetics of this transformation to the anhydrate were monitored by analysis of peak intensity ratios with time. A two stage rearrangement was indicated; some functional groups appeared to manoeuvre into the spatial arrangement found in the anhydrate initially before the rest of the ring structure relaxed into this conformation. This may be due to some parts of the molecule being immediately affected by the loss of the water molecules on dehydration prior to the subsequent reorientation of the entire molecule into the anhydrate crystal lattice.

Conclusions. The <45 μm particle size fraction becomes disordered on dehydration induced by heating at 80°C whilst the >425 μm particle size fraction crystallises to the anhydrate under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Roser. Trehalose Drying—A Novel Replacement For Freeze-Drying. Biopharm. 4:47-52. (1991).

    Google Scholar 

  2. L. M. Crowe, D. S. Reid, and J. H. Crowe. Is Trehalose Special For Preserving Dry Biomaterials? Biophys. J. 71:2087-2093 (1996).

    PubMed  Google Scholar 

  3. J. F. Carpenter and J. H. Crowe. An Infrared Spectroscopic Study Of The Interactions Of Carbohydrates With Dried Proteins. Biochem. 28:3916-3922 (1992).

    Google Scholar 

  4. H. Levine and L. Slade. Another View Of Trehalose For Drying And Stabilizing Biological Membranes. Biopharm. 5:36-40 (1992).

    Google Scholar 

  5. B. C. Hancock and G. Zografi. Characteristics And Significance Of The Amorphous State. J. Pharm. Sci. 86:1-12 (1997).

    Article  PubMed  Google Scholar 

  6. B. J. Aldous, A. D. Auffret, and F. Franks. The Crystallisation Of Hydrates From Amorphous Carbohydrates. Cryo-Letters 16:181-186 (1995).

    Google Scholar 

  7. G. M. Brown, D. Rohrer, B. Berking, C. A. Beevers, R. O. Gould, and R. Simpson. The Crystal Structure Of α,α-Trehalose Dihydrate From Three Independent X-Ray Determinations. Acta Cryst. B28:3145-3158 (1972).

    Google Scholar 

  8. T. Taga, M. Senna, and K. Osaki. The Crystal And Molecular Structure Of Trehalose Dihydrate. Acta Cryst. B28:3258-3263 (1972).

    Google Scholar 

  9. G. A. Jeffrey and R. Nanni. The Crystal Structure Of Anhydrous α,α-Trehalose At-150°. Carbohydr. Res. 137:21-30 (1985).

    PubMed  Google Scholar 

  10. L. S. Taylor and P. York. Characterisation Of The Phase Transitions Of Trehalose Dihydrate On Heating And Subsequent Dehydration. J. Pharm. Sci.(1998) In Press.

  11. H. G. Brittain. Spectral Methods For The Characterization Of Polymorphs and Solvates. J. Pharm. Sci. 86:405-412 (1997).

    Article  PubMed  Google Scholar 

  12. P. N. Prasad, J. Swiatkiewicz, and G. Eisenhardt. Laser Raman Investigation Of Solid State Reactions. Appl. Spectrosc. Rev. 18:59-103 (1982).

    Google Scholar 

  13. D. E. Bugay and A. C. Williams. Vibrational Spectroscopy. In H. G Brittain (ed.), Physical Characterization of Pharmaceutical Solids, Marcel Dekker Inc., New York, 1995, pp 59-91.

    Google Scholar 

  14. L. E. McMahon, P. Timmins, A. C. Williams, and P. York. Characterisation Of Dihydrates Prepared From Carbamazepine Polymorphs. J. Pharm. Sci. 86:1064-1069 (1996).

    Google Scholar 

  15. F. Shafizadeh and R. A. Susott. Crystalline Transitions Of Carbohydrates. J. Org. Chem. 28:3710-3715 (1973).

    Google Scholar 

  16. H. G. M. Edwards, D. W. Farwell, J. M. C. Turner, and A. C. Williams. Novel Environmental Control Chamber For FT-Raman Spectroscopy: Study Of In Situ Phase Change Of Sulphur. Appl. Spectrosc. 51:101-107 (1997).

    Google Scholar 

  17. S. Abbate, G. Conti, and A. Naggi. Characterisation Of The Glycosidic Linkage By Infrared And Raman Spectroscopy In The C-H Stretching Region: α,α-trehalose and α,α-trehalose-2,3,4,6,6-d 10. Carbohydr. Res. 210:1-12 (1991).

    Google Scholar 

  18. P. D. Vasko, J. Blackwell, and J. L. Koenig. Infrared And Raman Spectroscopy Of Carbohydrates. Part II. Normal Coordinate Analysis of α-D-Glucose. Carbohydr. Res. 23:407-416 (1972).

    Google Scholar 

  19. M. Matlouthi and J. L. Koenig. Vibrational Spectra Of Carbohydrates. Adv. Carb. Chem. Biochem. 44:7-89 (1986).

    Google Scholar 

  20. J. J. Cael, J. L. Koenig, and J. Blackwell. Infrared And Raman Spectroscopy Of Carbohydrates. Part IV. Identification Of Configuration-And Conformation-Sensitive Modes For D-Glucose By Normal Coordinate Analysis. Carbohydr. Res. 32:79-91 (1974).

    Google Scholar 

  21. S. A. Barker, E. J. Bourne, R. Stephens, and D. H. Whiffen. Infrared Spectra Of Carbohydrates. Part II. Anomeric Configuration of Some Hexo-And Pento-pyranoses. J. Chem. Soc. 171:3468-3473 (1954).

    Google Scholar 

  22. A. T. Tu. Raman Spectroscopy In Biology. Principles And Applications. John Wiley and Sons, Inc, New York, 1982.

    Google Scholar 

  23. L. S. Taylor, P. York, A. C. Williams, and V. Mehta. Characterisation of Frozen Glucose Solutions. Pharma. Dev. Tech. 2:395-402 (1997).

    Google Scholar 

  24. R. K. Khankari and D. J. W. Grant. Pharmaceutical Hydrates. Thermochim. Acta. 248:61-79 (1995).

    Google Scholar 

  25. C. A. Duda and E. S. Stevens. Trehalose Conformation In Aqueous Solution From Optical Rotation. J. Am. Chem. Soc. 112:7406-7407 (1990).

    Google Scholar 

  26. L. S. Taylor. Carbohydrates As Protein Stabilising Agents. PhD Thesis, University of Bradford, Bradford, UK 1996.

    Google Scholar 

  27. A. M. Gil, P. S. Belton, and V. Felix. Spectroscopic Studies Of Solid α,α Trehalose. Spectrochim. Acta. 52:1649-1659 (1996).

    Google Scholar 

  28. S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg, and G. Poochikian. Pharmaceutical Solids: A Strategic Approach To Regulatory Considerations. Pharm. Res. 12:945-954, (1995).

    Article  PubMed  Google Scholar 

  29. P. York. Solid-State Properties Of Powders In The Formulation And Processing Of Solid Dosage Forms. Int. J. Pharm. 14:1-28 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, L.S., Williams, A.C. & York, P. Particle Size Dependent Molecular Rearrangements During the Dehydration of Trehalose Dihydrate-In Situ FT-Raman Spectroscopy. Pharm Res 15, 1207–1214 (1998). https://doi.org/10.1023/A:1011935723444

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011935723444

Navigation