Skip to main content
Log in

Sequence homology and structure predictions of the creatine kinase isoenzymes

  • Molecular Biology of Creatine Kinases
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Comparisons of the protein sequences and gene structures of the known creatine kinase isoenzymes and other guanidino kinases revealed high homology and were used to determine the evolutionary relationships of the various guamidino kinases. A ‘CK framework’ is defined, consisting of the most conserved sequence blocks, and ‘diagnostic boxes’ are identified which are characteristic for anyone creatine kinase isoenzyme (e.g. for vertebrate B-CK) and which may serve to distinguish this isoenzyme from all others (e.g. from M-CKs and Mi-CKs). Comparison of the guanidino kinases by near-UV and far-UV circular dichroism further indicates pronounced conservation of secondary structure as well as of aromatic amino acids that are involved in catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GuaK:

guanidino kinase

CK:

creatine kinase

B-and M-CK:

brain and muscle cytosolic CK isoenzyme

Mi-CK:

mitochondrial CK isoenzyme

ArgK:

arginine kinase

Cr:

creatine

PCr:

phosphorylcreatine

PArg:

phosphorylarginine

References

  1. Robin Y: Biological distribution of guanidines and phosphagens in marine annelida and related phyla from California, with a note on pluriphosphagens. Comp Biochem Physiol 12:347–367, 1964

    Google Scholar 

  2. Watts DC: Evolution of phosphagen kinases. In: E Schoffeniels (ed.) Biochemical Evolution and the Origin of Life. North-Holland Publishing Company, Amsterdam and London, 1971, pp 150–173

    Google Scholar 

  3. Watts DC: Evolution of phosphagen kinases in the chordate line. Symp Zool Soc Lond 36:107–127, 1975

    Google Scholar 

  4. Ellington WR: Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens J Exp Biol 143:177–194, 1989

    PubMed  Google Scholar 

  5. Eppenberger HM, Dawson DM, Kaplan NO: The comparative enzymology of creatine kinases. J Biol Chem 242:204–209, 1967

    PubMed  Google Scholar 

  6. Wyss M, Smeitink J, Wevers RA, Wallimann T: Mitochondrial creatine kinase: A key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102:119–166, 1992

    PubMed  Google Scholar 

  7. Wyss M, Schlegel J, James P, Eppenberger HM, Wallimann T: Mitochondrial creatine kinase from chicken brain. J Biol Chem 265: 15900–15908, 1990

    PubMed  Google Scholar 

  8. Wirz T, Brändle U, Soldati T, Hossle JP, Perriard J-C,: A unique chicken B-creatine kinase gene gives rise to two B-creatine kinase isoproteins with distinct N termini by alternative splicing. J Biol Chem 265:11656–11666, 1990

    PubMed  Google Scholar 

  9. Rosenberg UB, Eppenberger HM, Perriard J-C: Occurrence of heterogenous forms of the subunits of creatine kinase in various muscle and nonmuscle tissues and their behaviour during myogenesis. Eur J Biochem 116:87–92, 1981

    PubMed  Google Scholar 

  10. Soldati T, Schäfer BW, Perriard J-C: Alternative ribosomal initiation gives rise to chicken brain-type creatine kinase isoproteins with heterogeneous amino termini. J Biol Chem 265:4498–4506, 1990

    PubMed  Google Scholar 

  11. Mahadevan LC, Whatley SA, Leung TKC, Lim L: The brain isoform of a key ATP-regulating enzyme, creatine kinase, is a phosphoprotein. Biochem J 222:139–144, 1984

    PubMed  Google Scholar 

  12. Quest AFG, Soldati T, Hemmer W, Perriard J-C, Eppenberger HM, Wallimann T: Phosphorylation of chicken brain-type creatine kinase affects a physiologically important kinetic parameter and gives rise to protein microheterogeneityin vivo. FEBS Lett 269:457–464, 1990

    PubMed  Google Scholar 

  13. Chida K, Kasahara K, Tsunenaga M, Kohno Y, Yamada S, Ohmi S, Kuroki T: Purification and identification of creatine phosphokinase B as a substrate of protein kinase C in mouse skinin vivo. Biochem Biophys Res Commun 173:351–357, 1990

    PubMed  Google Scholar 

  14. Hemmer W, Skarli M, Perriard J-C, Wallimann T: Effect of okadaic acid on protein phosphorylation patterns of chicken myogenic cells with special reference to creatine kinase. FEBS Lett 327:35–40, 1993

    PubMed  Google Scholar 

  15. Eppenberger ME, Eppenberger HM, Kaplan NO: Evolution of creatine kinase. Nature 214:239–241, 1967

    PubMed  Google Scholar 

  16. Fisher SE, Whitt GS: Evolution of isozyme loci and their differential tissue expression. J Mol Evol 12:25–55, 1978

    PubMed  Google Scholar 

  17. Fisher SE, Shaklee JB, Ferris SD, Whitt GS: Evolution of five multilocus isozyme systems in the chordates. Genetica 52/53:73–85, 1980

    Google Scholar 

  18. Klemann SW, Pfohl RJ: Creatine phosphokinase inRana pipiens: Expression in embryos, early larvae and adult tissue. Comp Biochem Physiol 73B:907–914, 1982

    Google Scholar 

  19. Legssyer A, Arrio-Dupont M: Mitochondrial isoenzyme of creatine kinase in frog heart. Comp Biochem Physiol 89B:251–255, 1988

    Google Scholar 

  20. Wolff J, Kobel HR: Creatine kinase isozymes in pipid frogs: Their genetic bases, gene expressional differences, and evolutionary implications. J Exp Zool 234:471–480, 1985

    Google Scholar 

  21. Garber AT, Winkfein RJ, Dixon GH: A novel creatine kinase cDNA whose transcript shows enhanced testicular expression. Biochim Biophys Acta 1087:256–258, 1990

    PubMed  Google Scholar 

  22. Barrantes FJ, Mieskes G, Wallimann T: Creatine kinase activity in theTorpedo electrocyte and in the non-receptor, peripheral v-proteins from acetylcholine receptor-rich membranes Proc Natl Acad Sci USA 80:5440–5444, 1983

    PubMed  Google Scholar 

  23. Giraudat J, Devillers-Thiery A, Perriard J-C, Changeux JP: Complete nucleotide sequence ofTorpedo marmorata mRNA coding for the 43,000-dalton v2 protein: Muscle-specific creatine kinase. Proc Natl Acad Sci USA 81:7313–7317, 1984

    PubMed  Google Scholar 

  24. Witzemann V: Creatine phosphokinase: Isoenzymes inTorpedo marmorata. Eur J Biochem 150:201–210, 1985

    PubMed  Google Scholar 

  25. Gysin R, Yost B, Flanagan SD: Creatine kinase isoenzymes inTorpedo californica: Absence of the major brain isoenzyme from nicotinic acetylcholine receptor membranes. Biochemistry 25:1271–1278, 1986

    PubMed  Google Scholar 

  26. Tombes RM, Shapiro BM: Metabolite channelling: A phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell 41:325–334, 1985

    PubMed  Google Scholar 

  27. Tombes RM, Shapiro BM: Enzyme termini of a phosphocreatine shuttle: Purification and characterization of two creatine kinase isozymes from sea urchin sperm. J Biol Chem 262:16011–16019, 1987

    PubMed  Google Scholar 

  28. Tombes RM, Shapiro BM: Energy transport and cell polarity: Relationship of phosphagen kinase activity to sperm function. J Exp Zool 251:82–90, 1989

    PubMed  Google Scholar 

  29. Wyss M: Biochemical and physiological aspects of mitochondrial creatine kinase. Diss. No. 9777, ETH Zürich, Switzerland, 1992

    Google Scholar 

  30. Ratto A, Shapiro BN, Christen R: Phosphagen kinase evolution. Eur J Biochem 186:195–203, 1989

    PubMed  Google Scholar 

  31. Wothe DD, Charbonneau H, Shapiro BM: The phosphocreatine shuttle of sea urchin sperm: Flagellar creatine kinase resulted from a gene triplication. Proc Natl Acad Sci USA 87:5203–5207 1990

    PubMed  Google Scholar 

  32. Dumas C, Camonis J: Cloning and sequence analysis of the cDNA for arginine kinase of lobster muscle. J Biol Chem 268:21599–21605, 1993

    PubMed  Google Scholar 

  33. Morrison JF: Arginine kinase and other invertebrate guanidino kinases. In: PD Boyer (ed.) The Enzymes. Academic Press, New York, 1973, pp 457–486

    Google Scholar 

  34. Stein LD, Harn DA, David JR: A cloned ATP:guanidino kinase in the trematodeSchistosoma mansoni has a novel duplicated structure. J Biol Chem 265:6582–6588, 1990

    PubMed  Google Scholar 

  35. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12:387–395, 1984

    PubMed  Google Scholar 

  36. Genetics Computer Group, GCG: Program Manual for the GCG Package. Version 7, April 1991. 575 Science Drive, Madison, Wisconsin, 53711, USA

  37. Robert J, Wolff J, Jijakli H, Graf J-D, Karch F, Kobel HR: Developmental expression of the creatine kinase isozyme system ofXenopus: maternally derived CK-IV isoform persists far beyond the degradation of its maternal mRNA and into the zygotic expression period. Development 108:507–514, 1990

    PubMed  Google Scholar 

  38. Robert J, Barandun B, Kobel HR: AXenopus laevis creatine kinase isozyme (CK-III/III) expressed preferentially in larval striated muscle: cDNA sequence, developmental expression and subcellular immunolocalization. Genet Res Camb 58:35–40, 1991

    Google Scholar 

  39. Wirz T: Genetische Grundlagen der Heterogenität von zytosolischen und mitochondrialen Kreatin Kinasen. Diss. No. 9409, ETH Zürich, Switzerland, 1991

    Google Scholar 

  40. Mühlebach SM, Brändle U, Wirz T, Egli A, Perriard J-C: in preparation, 1994

  41. Schwartz RM, Dayhoff MO: Matrices for detecting distant relationships. In: MO Dayhoff (ed.) Atlas of Protein Sequence and Structure. National Biomedical Research Foundation. Washington, DC, 1978, pp 353–358

    Google Scholar 

  42. Gribskov M, Burgess RR: Sigma factors fromE. coli, B. subtilis, phage SPO1, and phage T4 are homologous proteins. Nucl Acids Res 14:6745–6763, 1986

    PubMed  Google Scholar 

  43. Lüttke A, Fuchs R: MacT: Apple Macintosh programs for constructing phylogenetic trees. Comput Applic Biosci 8:591–594, 1992

    Google Scholar 

  44. Saitou N, Nei M: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425, 1987

    PubMed  Google Scholar 

  45. Fitch WM, Margoliash E: Construction of phylogenetic trees. Science 155:279–284, 1967

    PubMed  Google Scholar 

  46. Jaynes JB, Chamberlain JS, Buskin JN, Johnson JE, Hauschka SD: Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Mol Cell Biol 6:2855–2864, 1986

    PubMed  Google Scholar 

  47. Mariman ECM, Broers, CAM, Claesen CAA, Tesser GI, Wieringa B: Structure and expression of the human creatine kinase B gene. Genomics 1:126–137, 1987

    PubMed  Google Scholar 

  48. Mariman ECM, Schepens JTG, Wieringa B: Complete nucleotide sequence of the human creatine kinase B gene. Nucleic Acids Res 17:6385, 1989

    PubMed  Google Scholar 

  49. Daouk GH, Kaddurah-Daouk R, Putney S, Kingston R, Schimmel P: Isolation of a functional human gene for brain creatine kinase. J Biol Chem 263:2442–2446, 1988

    PubMed  Google Scholar 

  50. Benfield PA, Graf D, Korolkoff PN, Hobson G, Pearson ML: Isolation of four rat creatine kinase genes and identification of multiple potential promoter sequences within the rat brain creatine kinase promoter region. Gene 63:227–243, 1988

    PubMed  Google Scholar 

  51. Trask RV, Strauss AW, Billadello JJ: Developmental regulation and tissue-specific expression of the human muscle creatine kinase gene. J Biol Chem 263:17142–17149, 1988

    PubMed  Google Scholar 

  52. Van Deursen J, Schepens J, Peters W, Meijer D, Grosveld G, Hendriks W, Wieringa B: Genetic variability of the murine creatine kinase B gene locus and related pseudogenes in different inbred strains of mice. Genomics 12:340–349, 1992

    PubMed  Google Scholar 

  53. Haas RC, Korenfeld C, Zhang Z, Perryman B, Roman D, Strauss AW: Isolation and characterization of the gene and cDNA encoding human mitochondrial creatine kinase. J Biol Chem 264:2890–2897, 1989

    PubMed  Google Scholar 

  54. Klein SC, Haas RC, Perryman MB, Billadello JJ, Strauss AW: Regulatory element analysis and structural characterization of the human sarcomeric mitochondrial creatine kinase gene. J Biol Chem 266:18058–18065, 1991

    PubMed  Google Scholar 

  55. Steeghs K, Peters W, Wieringa B: Structure of the murine mitochondrial creatine kinase ubiquitous gene. Unpublished/extracted from GenEMBL sequence data libraries under accession number Z13968, 1992

  56. Furukohri T, Fujimoto K, Susuki T: Glycocyamine kinase from the polychaete,Neanthes diversicolor. Isolation, purification and tryptic digestion of glycocyamine kinase. Mem Fac Sci Kochi Univ Ser D (Biol) 8:85–94, 1987

    Google Scholar 

  57. Pickover CA, McKay DB, Engelman DM, Steitz TA: Substrate binding closes the cleft between the domains of yeast phosphoglycerate kinase. J Biol Chem 254:11323–11329, 1979

    PubMed  Google Scholar 

  58. Dumas C, Janin J: Conformational changes in arginine kinase upon ligand binding seen by small-angle X-ray scattering. FEBS Lett 153:128–130, 1983

    Google Scholar 

  59. Morris GE, Cartwright AJ: Monoclonal antibody studies suggest a catalytic site at the interface between domains in creatine kinase. Biochim Biophys Acta 1039:318–322, 1990

    PubMed  Google Scholar 

  60. Morris GE, Jackson PJ: Identification by protein microsequencing of a proteinase-V8-cleavage site in a folding intermediate of chick muscle creatine kinase. Biochem J 280:809–811, 1991

    PubMed  Google Scholar 

  61. Wyss M, James P, Schlegel J, Wallimann T: Limited proteolysis of creatine kinase. Biochemistry 32:10727–10735, 1993

    PubMed  Google Scholar 

  62. Hossle JP, Schlegel J, Wegmann G, Wyss M, Böhlen P, Eppenberger HM, Wallimann T, Perriard J-C: Distinct tissue specific mitochondrial creatine kinases from chicken brain and striated muscle with a conserved CK framework. Biochem Biophys Res Commun 151:408–416, 1988

    PubMed  Google Scholar 

  63. Perryman MB, Kerner SA, Bohlmeyer TJ, Roberts R: Isolation and sequence analysis of a full-length cDNA for human M creatine kinase. Biochem Biophys Res Commun 140:981–989, 1986

    PubMed  Google Scholar 

  64. Furter R, Furter-Graves EM, Wallimann T Creatine kinase: The reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry 32:7022–7029, 1993

    PubMed  Google Scholar 

  65. Buskin JN, Jaynes JB, Chamberlain JS, Hauschka SD: The mouse muscle creatine kinase cDNA and deduced amino acid sequences: comparison to evolutionarily related enzymes. J Mol Evol 22: 334–341, 1985

    PubMed  Google Scholar 

  66. Taylor SS, Buechler JA, Yonemoto W: cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 59:971–1005, 1990

    PubMed  Google Scholar 

  67. DerTerrossian E, Desvages G, Pradel L-A, Kassab R, van Thoai N: Comparative structural studies of the active site of ATP:guanidine phosphotransferases. The essential cysteine tryptic peptide of lombricine kinase fromLumbricus terrestris muscle. Eur J Biochem 22:585–592, 1971

    PubMed  Google Scholar 

  68. Brevet A, Zeitoun Y, Pradel L-A: Comparative structural studies of the active site of ATP:guanidine phosphotransferases. The essential cysteine tryptic peptide of taurocyamine kinase fromArenicola marina. Biochim Biophys Acta 393:1–9, 1975

    PubMed  Google Scholar 

  69. Mahowald TA: Identification of an epsilon amino group of lysine and a sulfhydryl group of cysteine near the reactive cysteine residue in rabbit muscle creatine kinase. Fed Proc 28:601, 1969

    Google Scholar 

  70. Babbitt PC, Kenyon GL, Kuntz ID, Cohen FE, Baxter JD, Benfield PA, Buskin JD, Gilbert WA, Hauschka SD, Hossle JP, Ordahl CP, Pearson ML, Perriard J-C, Pickering LA, Putney SD, West BL, Zivin RA: Comparisons of creatine kinase primary structures. J Protein Chem 5:1–14, 1986

    Google Scholar 

  71. James P, Wyss M, Lutsenko S, Wallimann T, Carafoli E: ATP binding site of mitochondrial creatine kinase. FEBS Lett 273:139–143, 1990

    PubMed  Google Scholar 

  72. Kaldis P, Furter R, Wallimann T: The N-terminal heptapeptide of mitochondrial creatine kinase is important for octamerization. Biochemistry 33, 952–959, 1994

    PubMed  Google Scholar 

  73. Gross M, Furter-Graves EM, Eppenberger HM, Wallimann T, Furter R: The tryptophan residues of mitochondrial creatine kinase: Trp-223, Trp-206, and Trp-264 in active site and quarternary structure formation, Prot Sci 3, in press, 1994

  74. Yang JT, Chuen-Shang CW, Martinez HM: Calculation of protein conformation from circular dichroism. Meth Enzymol 130:208–256, 1986

    PubMed  Google Scholar 

  75. Oriol C, Landon M-F: Le dichroisme circulaire de diverses phosphagène phosphotransférases. Biochim Biophys Acta 214:455–462, 1970

    PubMed  Google Scholar 

  76. Manavalan P, Johnson WC: Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem 167:76–85, 1987

    PubMed  Google Scholar 

  77. Vasak M, Nagayama K, Wüthrich K, Mertens M, Kägi JHR: Creatine kinase. Nuclear magnetic resonance and fluorescence evidence for interaction of ADP with aromatic residue(s). Biochemistry 18:5050–5055, 1979

    PubMed  Google Scholar 

  78. Kägi JHR, Li T-K, Vallee BL: Extrinsic Cotton effects in complexes of creatine kinase with adenine coenzymes. Biochemistry 10: 1007–1015, 1971

    PubMed  Google Scholar 

  79. Zhou H-M, Tsou C-L: An essential tryptophan residue for rabbit muscle creatine kinase. Biochim Biophys Acta 830:59–63 1985

    PubMed  Google Scholar 

  80. Fattoum A, Kassab R, Pradel L-A: The tyrosyl residues in creatine kinase. Modification by iodine. Biochim Biophys Acta 405: 324–339, 1975

    PubMed  Google Scholar 

  81. Villarreal-Levy G, Ma TS, Kerner SA, Roberts R, Perryman MB: Human creatine kinase: Isolation and sequence analysis of cDNA clones for the B subunit, development of subunit specific probes and determination of gene copy number. Biochem Biophys Res Commun 144:1116–1127, 1987

    PubMed  Google Scholar 

  82. Billadello JJ, Kelly DP, Roman DG, Strauss AW: The complete nucleotide sequence of canine brain B creatine kinase mRNA: Homology in the coding and 3′ noncoding regions among species. Biochem Biophys Res Commun 138:392–398, 1986

    PubMed  Google Scholar 

  83. Pickering L, Pang H, Biemann K, Munro H, Schimmel P: Two tissue-specific isozymes of creatine kinase have closely matched amino acid sequences. Proc Natl Acad Sci USA 82:2310–2314, 1985

    PubMed  Google Scholar 

  84. Benfield PA, Henderson L, Pearson ML: Expression of a rat brain creatine kinase-beta-galactosidase fusion protein inEscherichia coli and derivation of the complete amino acid sequence of rat brain creatine kinase. Gene 39:263–267, 1985

    PubMed  Google Scholar 

  85. Hossle JP, Rosenberg UB, Schaefer B Eppenberger HM, Wallimann, T, Perriard JC: The primary structure of chicken B-creatine kinase and evidence for heterogeneity of its mRNA. Nucl Acids Res 14:1449–1463, 1986

    PubMed  Google Scholar 

  86. Kwiatkowski RW, Ehrismann R, Schweinfest CW, Dottin RP: Accumulation of creatine kinase mRNA during myogenesis: Molecular cloning of a B-creatine kinase cDNA. Dev Biol 112:84–88 1985

    PubMed  Google Scholar 

  87. Roman D, Billadello J, Gordon J, Grace A, Sobel B, Strauss A: Complete nucleotide sequence of dog heart creatine kinase mRNA: Conservation of amino acid sequence within and among species. Proc Natl Acad Sci USA 82:8394–8398, 1985

    PubMed  Google Scholar 

  88. Putney S, Herlihy W, Royal N, Pang H, Aposhian HV, Pickering L, Belagaje R, Biemann K, Page D, Kuby S, Schimmel P: Rabbit muscle creatine phosphokinase: cDNA cloning, primary structure, and detection of human homologues. J Biol Chem 259: 14317–14320, 1984

    PubMed  Google Scholar 

  89. Benfield PA, Zivin RA, Miller LS, Sowder R, Smythers GW, Henderson, L, Oroszlan S, Pearson ML: Isolation and sequence analysis of cDNA clones coding for rat skeletal muscle creatine kinase. J Biol Chem 259:14979–14984, 1984

    PubMed  Google Scholar 

  90. Kwiatkowski RW, Schweinfest CW, Dottin RP: Molecular cloning and the complete nucleotide sequence of the creatine kinase-M cDNA from chicken. Nucl Acids Res 12:6925–6934, 1984

    PubMed  Google Scholar 

  91. Ordahl CP, Evans GL, Cooper TA, Kunz G, Perriard J-C: Complete cDNA-derived amino acid sequence of chick muscle creatine kinase. J Biol Chem 259:15224–15227, 1984

    PubMed  Google Scholar 

  92. West BL, Babbitt PC, Mendez B, Baxter JD: Creatine kinase protein sequence encoded by a cDNA made fromTorpedo californica electric organ mRNA. Proc Natl Acad Sci USA 81:7007–7011, 1984

    PubMed  Google Scholar 

  93. Payne RM, Haas RC, Strauss AW: Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes. Biochim Biophys Acta 1089:352–361, 1991

    PubMed  Google Scholar 

  94. Haas RC, Strauss AW: Separate nuclear genes encode sarcomerespecific and ubiquitous human mitochondrial creatine kinase isoenzymes. J Biol Chem 265:6921–6927, 1990

    PubMed  Google Scholar 

  95. McCombie WR, Adams MD, Kelley JM, FitzGerald MC, Utterback TR, Khan M, Dubnick M, Kerlavage AG, Venter J, Fields C:Caenohabditis elegans expressed sequence tags reveal gene tamilies and potential disease gene homologues. Unpublished/extracted from GenEMBL data library under accession number M79599, 1992

  96. Waterston R, Martin C, Craxton M, Huynh C, Coulson A, Hillier L, Durbin R, Green P, Shownkeen R, Halloran N, Metzstein M, Hawkins T, Wilson R, Berks M, Du Z, Thomas K, Thierry-Mieg J, Sulston J: A survey of expressed genes inCaenorhabditis elegans. Nature Genet 1:114–123, 1992

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlebach, S.M., Gross, M., Wirz, T. et al. Sequence homology and structure predictions of the creatine kinase isoenzymes. Mol Cell Biochem 133, 245–262 (1994). https://doi.org/10.1007/BF01267958

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01267958

Key words

Navigation