Skip to main content
Log in

The second dissociation constant of sulfuric acid at various temperatures by the conductometric method

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamic second dissociation constant K2 for sulfuric acid has been determined by conductivity measurements of aqueous sulfuric acid solutions at various temperatures. The data are treated by using two different methods developed with two independent assumptions due to Noyes et al. and Shedlovsky. Both methods require the knowledge of relevant ionic conductivities, which may be calculated from the Onsager limiting law. The values for K2 obtained with these two methods show excellent agreement. The value of 0.0103 mol-L−1 at 25°C agrees with the ‘best’ literature value of 0.0102 mol-L−1 within the experimental uncertainty, as also does the enthalpy of dissociation which is derived from the derivative of the temperature coefficient of K2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. MacInnes and T. Shedlovsky,J. Am. Chem. Soc. 54, 1429 (1932).

    Google Scholar 

  2. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolyic Solutions, 3rd edn., (Reinhold, New York, 1958).

    Google Scholar 

  3. R. G. Bates,J. Res. NBS. 47, 127 (1951).

    Google Scholar 

  4. E. J. King and G. W. King,J. Am. Chem. Soc. 74, 1212 (1952).

    Google Scholar 

  5. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd edn., (Butterworths, London, 1959), p. 341.

    Google Scholar 

  6. K. S. Pitzer and L. Brewer,Thermodynamics, Rev. edn., G. N. Lewis and M. Randall, ed., (McGraw-Hill, New York, 1961).

    Google Scholar 

  7. W. J. Hamer,The Structure of Electrolyte Solutions, (Wiley, New York, 1959), Chap. 15.

    Google Scholar 

  8. H. S. Dunsmore and G. H. Nancollas,J. Phys. Chem. 68, 1579 (1964).

    Google Scholar 

  9. G. H. Nancollas,Quarterly Reviews,14, 402 (1960).

    Google Scholar 

  10. T. F. Young and D. E. Irish,Ann. Rev. Phys. Chem.,13, 435 (1962).

    Google Scholar 

  11. S. Cabini and P. Giani, Anal. Chem.44, 253 (1972).

    Google Scholar 

  12. M. Kerker,J. Am. Chem. Soc. 79, 3664 (1957).

    Google Scholar 

  13. C. W. Davies, H. W. Jones, and C. B. Monk,Trans. Faraday Soc. 48, 921 (1952).

    Google Scholar 

  14. M. S. Sherrill and A. A. Noyes,J. Am. Chem. Soc. 48, 1861 (1926).

    Google Scholar 

  15. W. J. Hamer,J. Am. Chem. Soc. 56, 860 (1934).

    Google Scholar 

  16. H. E. Wirth,Electrochim. Acta 16, 1345 (1971).

    Google Scholar 

  17. A. K. Covington, J. V. Dobson, and W. F. K. Wynne-Jones,Trans. Faraday Soc. 61, 2050 (1965).

    Google Scholar 

  18. I. M. Klotz and C. R. Singleterry, Doctoral Dissertations, University of Chicago, 1940.

  19. T. F. Young, L. F. Maranville, and H. M. Smith, inThe Structure of Electrolyte Solutions, ed. J. W. Hamer, (Wiley, New York, 1959), Chap. 4.

    Google Scholar 

  20. V. S. Nair and G. H. Nancollas,J. Chem. Soc. 41, 44 (1958).

    Google Scholar 

  21. K. S. Pitzer, R. N. Roy, and L. F. Silvester,J. Am. Chem. Soc. 99, 4930 (1977).

    Google Scholar 

  22. R. N. Goldberg,J. Res. NBS. 89, 251 (1984).

    Google Scholar 

  23. J. A. Rard, Personal Communication.

  24. H. F. Holmes and R. E. Mesmer,J. Chem. Thermodyn. 24, 317 (1992).

    Google Scholar 

  25. A. A. Noyes and M. A. Stewart,J. Am. Chem. Soc. 32, 1133 (1910).

    Google Scholar 

  26. W. J. Hamer,J. Am. Chem. Soc. 57, 662 (1935).

    Google Scholar 

  27. M. Kerker, J. Keller, J. Siau, and E. Matijevic,Trans. Faraday Soc. 57, 780 (1961).

    Google Scholar 

  28. T. Shedlovsky,J. Franklin Inst. 225, 739 (1938).

    Google Scholar 

  29. R. M. Fuoss and T. Shedlovsky,J. Am. Chem. Soc. 71, 1496 (1949).

    Google Scholar 

  30. L. Onsager and R. M. Fuoss,J. Phys. Chem. 36, 2689 (1932).

    Google Scholar 

  31. Y. C. Wu, W. F. Koch, P. A. Berezansky, and L. A. Holland,J. Solution Chem. 21, 597 (1992).

    Google Scholar 

  32. B. B. Owen and R. W. Gurry,J. Am. Chem. Soc. 60, 3074 (1938).

    Google Scholar 

  33. M. S. Chen and L. Onsager,J. Phys. Chem. 81, 2017 (1977).

    Google Scholar 

  34. M. S. Chen,J. Solution Chem. 7, 675 (1978);8, 165, 509 (1979).

    Google Scholar 

  35. Y. C. Wu, W. F. Koch, P. Berezansky, and L. A. Holland,J. Solution Chem. 21, 383 (1992).

    Google Scholar 

  36. R. H. Stokes,J. Am. Chem. Soc. 76, 1988 (1954).

    Google Scholar 

  37. Y. C. Wu, K. W. Pratt and W. F. Koch,J. Solution Chem. 18, 515 (1989).

    Google Scholar 

  38. H. M. Daggett, E. J. Bair and C. A. Kraus,J. Am. Chem. Soc. 73, 799 (1951).

    Google Scholar 

  39. Landolt-Bornstein, 6 Aufl, Bd II/7, (Springer-Verlag, Berlin, 1960).

  40. K. S. Pitzer,J. Am. Chem. Soc. 59, 2365 (1937).

    Google Scholar 

  41. S. L. Clegg, J. A. Rard, and K. S. Pitzer,J. Chem. Soc. Faraday Trans. 90, 1875 (1994).

    Google Scholar 

  42. A. G. Dickson, D. J. Wesolowski, D. A. Palmer, and R. E. Mesmer,J. Phys. Chem. 94, 7978 (1990).

    Google Scholar 

  43. Y. C. Wu, W. F. Koch, W. J. Hamer, and R. L. Kay,J. Solution Chem. 16, 985 (1987), andibid., J. Solution Chem. 19, 1053 (1990).

    Google Scholar 

  44. R. L. Kay and J. Dye,Proc. Natl. Acad. Sci.,49, 5 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y.C., Feng, D. The second dissociation constant of sulfuric acid at various temperatures by the conductometric method. J Solution Chem 24, 133–144 (1995). https://doi.org/10.1007/BF00972837

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972837

Key Words

Navigation