Skip to main content
Log in

Ion mobilities in DMF-water mixtures at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities and viscosities of mixtures of N,N-dimethylformamide (DMF) with water at 25°C have been determined. Limiting equivalent conductances of cesium chloride, potassium chloride, potassium bromide and potassium thiocyanate in these solvent mixtures at 25°C are presented together with corresponding values of ion association constants and distance of closest approach parameters. The transference number of the potassium ion has been determined in solvent mixtures ranging from 0 to 0.75 mol fraction in DMF in water at 25°C. The conductimetric Hittorf method has been used for both potassium bromide and potassium chloride in solutions of up to 0.496 mole fraction of DMF. For solutions of potassium thiocyanate in 0.5 and 0.75 mole fraction in DMF the cationic transference number has been determined using the moving boundary method. Stokes radii have been evaluated. Transport properties are examined in relation to-solvent properties such as composition, dielectric constant, excess volume of mixing and free volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Steel and R. H. Stokes,J. Phys. Chem. 62, 450 (1958).

    Google Scholar 

  2. A. I. Vogel,A Textbook of Quantative Analysis, 3rd ed. (Longmans, London 1961), p. 944.

    Google Scholar 

  3. B. B. Owen and H. Zeldes,J. Chem. Phys. 18, 1083 (1950).

    Google Scholar 

  4. D. E. Mulcahy and B. J. Steel,J. Chem. Eng. Data 30, 191 (1985).

    Google Scholar 

  5. C. J. James, D. E. Mulcahy, and B. J. Steel,J. Phys. D: Appl. Phys. 17, 225 (1984).

    Google Scholar 

  6. J. E. Lind, J. J. Zwolenik, and R. M. Fuoss,J. Amer. Chem. Soc. 81, 1557 (1959).

    Google Scholar 

  7. P. H. Dike,Rev. Sci. Inst. 2, 379 (1931).

    Google Scholar 

  8. J. L. Hawkes and R. L. Kay,J. Phys. Chem. 69, 2420 (1965).

    Google Scholar 

  9. R. H. Stokes,J. Phys. Chem. 65, 1242, 1277 (1961).

    Google Scholar 

  10. M. Spiro, inPhysical Methods of Chemistry, B. W. Rossiter and J. F. Hamilton, eds., Vol. 2 (J. Wiley and Sons, 1986) p. 765, Fig. 8.40b.

  11. M. Spiro, inPhysical Methods of Chemistry, B. W. Rossiter and J. F. Hamilton, eds., Vol. 2 (J. Wiley and Sons, 1986), Fig. 8.40b. Reference 10, p. 746.

  12. R. A. Robinson and R. H. Stokes,Electrolyte Solutions 2nd ed. (Butterworths, London, 1965), Chapter 7.

    Google Scholar 

  13. M. Spiro, inPhysical Methods of Chemistry, B. W. Rossiter and J. F. Hamilton, eds., Vol. 2 (J. Wiley and Sons, 1986), Fig. 8.40b. Reference 10, p. 745.

  14. G. R. Leader and J. F. Gormley,J. Amer. Chem. Soc. 73, 5731 (1951).

    Google Scholar 

  15. G. Douheret and M. Morenas,Compt. Rend. Ser. C. 264, 729 (1967).

    Google Scholar 

  16. C. de Visser, G. Perron, J. E. Desnoyers, W. J. M. Heuvelsland, and G. Somsen,J. Chem. Eng. Data.22, 74 (1977).

    Google Scholar 

  17. R. J. Raidon and K. A. Kraus, U.S. Office Saline Water,Res. Develop. Prog. Rep. 302, 52 (1968).

    Google Scholar 

  18. R. J. Fuoss and K. L. Hsia,Proc. Nat. Acad. Sci. USA 57, 1550 (1967);58, 1818 (1967).

    Google Scholar 

  19. E. W. Washburn, ed.,International Critical Tables of Numerical Data, Physics, Chemistry and Technology, Vol. 5 (National Research Council, New York, 1929), p. 252.

    Google Scholar 

  20. B. Garb and M. Hlasko,Roczniki Chem. 10, 248 (1930).

    Google Scholar 

  21. M. Spiro, inPhysical Methods of Chemistry, B. W. Rossiter and J. F. Hamilton, eds., Vol. 2 (J. Wiley and Sons, 1986), Fig. 8.40b. Reference 10, p. 784.

  22. J.-C. Justice and R. M. Fuoss,J. Phys. Chem. 67, 1707 (1963).

    Google Scholar 

  23. C. Treiner, J.-C. Justice, and R. M. Fuoss,J. Phys. Chem. 68, 3886 (1964).

    Google Scholar 

  24. E. Renard and J.-C. Justice,J. Solution Chem. 3, 633 (1974).

    Google Scholar 

  25. K. L. Hsia and R. J. Fuoss,J. Amer. Chem. Soc. 90, 3055 (1968).

    Google Scholar 

  26. J. E. Lind, Jr. and R. M. Fuoss,J. Phys. Chem. 65, 1414 (1961).

    Google Scholar 

  27. J. E. Prue and P. J. Sherrington,Trans. Faraday Soc. 57, 1795 (1961).

    Google Scholar 

  28. D. P. Ames and P. G. Sears,J. Phys. Chem. 59, 16 (1955).

    Google Scholar 

  29. D. F. Evans, T. Tominaga, J. B. Hubbard, and P. G. Wolynes,J. Phys. Chem. 83, 2669 (1979).

    Google Scholar 

  30. O. Ya. Samoilov,Structure of Aqueous Electrolyte Solutions and the Hydration of Ions, translated by D. J. G. Ives (Consultants Bureau, New York, 1965).

    Google Scholar 

  31. J. L. Kavanau,Water and Solute-Water Interactions, (Holden-Day Inc., San Francisco, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chittleborough, G., James, C. & Steel, B. Ion mobilities in DMF-water mixtures at 25°C. J Solution Chem 17, 1043–1057 (1988). https://doi.org/10.1007/BF00647800

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647800

Key words

Navigation