Skip to main content
Log in

In vivo pharmacokinetic study for the assessment of poly(L-aspartic acid) as a drug carrier for colon-specific drug delivery

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Glucocorticoids remain one of the mainstays of therapy for acute attacks of inflammatory bowel disease despite systemic side effects that limit their use. Prodrugs that selectively deliver glucocorticoids to the colon may lower the required dose and side effects. Because enzymes of gut microflora are able to cleave certain peptide and ester bonds, the ability of an ester prodrug consisting of dexamethasone (DX) as model drug and poly(L-aspartic acid) (weight-average mol wt=30,000) as drug carrier was investigated to selectively release the drug in the large intestine. Prodrug and drug solutions (1.18 mg DX/ml DMSO) were administered to two groups of male Sprague-Dawley rats by intragastric infusion using an ALZET® osmotic pump. All rats were infused for sufficient time to achieve steady state in both blood and GI-tract tissues. DX concentrations in blood and tissue samples were measured with HPLC. The steady state DX concentrations at these sites were used to calculate a drug delivery index (DDI). DX blood concentrations were significantly lower (p<0.05) after intragastric administration of the prodrug. Moreover, prodrug administration resulted in significantly higher DX concentrations in the cecum and colon mucosa and the cecum muscle tissue compared to DX administration (p<0.05). The prodrug led to an increase of the DX concentration in the large intestinal tissues by factors of 1.3–2.0 and to an 1.3-fold decrease of DX blood concentrations. Thus, this novel conjugate should both increase efficacy and reduce toxicity to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Harboe, C. Larsen, M. Johansen, and H. P. Olesen. Macromolecular prodrugs XIV. Absorption characteristics of naproxen after oral administration of a dextran T-70-naproxen ester prodrug in pigs.Int. J. Pharm. 53:157–165 (1989).

    Article  CAS  Google Scholar 

  2. E. Harboe, C. Larsen, M. Johansen, and H. P. Olesen. Macromolecular prodrugs XV. Colon-targeted delivery—Bioavailability of naproxen from orally administered dextrannaproxen ester prodrugs varying in molecular size in the pig.Pharm. Res. 6:919–923 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. A. D. McLeod, L. Tolentino, and T. N. Tozer. Glucocorticoid-dextran conjugates as potential prodrugs for colon-specific delivery: Steady-state pharmacokinetics in the rat.Biopharm. Drug Dispos. 15:151–161 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. A. D. McLeod, R. N. Fedorak, D. R. Friend, T. N. Tozer, and N. R. Cui. A glucocorticoid prodrug facilitates normal mucosal function in rat colitis without adrenal suppression.Gastroenterology 106:405–413 (1994).

    CAS  PubMed  Google Scholar 

  5. J. Nakamura, Y. Inoue, H. Sasaki, and J. Shibasaki. Prolonged blood concentration of salicyclic acid following the simultaneous oral administration of salicylic acid and salicyluric acid in rabbits.Chem. Pharm. Bull. 34:2624–2627 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. J. Nakamura, H. Shiota, Y. Haraguchi, H. Sasaki, and J. Shibasaki. Further studies on the hydrolysis of salicyluric acid in intestinal microorganisms and prolonged blood concentration of salicylic acid following rectal administration of salicyluric acid in rabbits.J. Pharmacobiodyn. 11:53–57 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. J. Nakamura, M. Katayama, M. Kido, K. Nishida, and H. Sasaki. Decrease of gastrointestinal mucosal damage by salicyluric acid compared with salicylic acid in rabbits.J. Pharm. Pharmacol. 43:766–773 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. J. Nakamura, M. Kido, K. Nishida, and H. Sasaki. Hydrolysis of salicylic acid-tyrosine and salicylic acid-methionine prodrugs in the rabbit.Int. J. Pharm. 87:59–66 (1992).

    Article  CAS  Google Scholar 

  9. J. Nakamura, C. Tagami, K. Nishida, and H. Sasaki. Unequal hydrolysis of salicylic acid-D-alanine and salicylic acid-L-alanine conjugate in rabbit intestinal microorganisms.Chem. Pharm. Bull. 40:547–549 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. J. Nakamura, C. Tagami, K. Nishida, and H. Sasaki. Development of a prodrug of salicylic acid, salicylic acid-L-alanine conjugate, utilizing hydrolysis in rabbit intestinal microorganisms.J. Pharm. Pharmacol. 44:295–299 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. K. Nishida, M. Kido, H. Sasaki, and J. Nakamura. Pharmacokinetic analysis of in vivo metabolism of amino acid or dipeptide conjugates of salicylic acid in rabbit intestinal microorganisms.Pharm. Res. 11:160–164 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. C. Clerici, G. Gentili, E. Boschetti, C. Santucci, A. G. Aburbeh, B. Natalini, R. Pellicciari, and A. Morelli. Amino acid derivatives of 5-ASA as novel prodrugs for intestinal drug delivery.Dig. Dis. Sci. 39:2601–2606 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. D. R. Friend and G. W. Chang. A colon-specific drug-delivery system basd on drug glycosides and the glycosidases of colonic bacteria.J. Med. Chem. 27:261–266 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. D. R. Friend, S. Phillips, and T. N. Tozer. Colon-specific drug delivery from a glucoside prodrug in the guinea-pig. Efficacy study.J. Controlled Release 15:47–54 (1991).

    Article  CAS  Google Scholar 

  15. T. N. Tozer, J. Rigod, A. D. McLeod, R. Gungon, M. K. Hoag, and D. R. Friend. Colon-specific delivery of dexamethasone from a glucoside prodrug in the guinea pig.Pharm. Res. 8:445–454 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. J. W. Simpkins, M. Smulkowski, R. Dixon, and R. Tuttle. Evidence for the delivery of narcotic antagonists to the colon as their glucuronide conjugates.J. Pharmacol. Exp. Ther. 244:195–205 (1988).

    CAS  PubMed  Google Scholar 

  17. B. Haeberlin, L. Empey, R. Fedorak, H. Nolen III, and D. Friend.In vivo studies in the evaluation of glucuronide prodrugs for novel therapy of ulcerative colitis.Proc. Int. Symp. Controlled Release Bioact. Mater. 20:174–175 (1993).

    Google Scholar 

  18. R. N. Fedorak, B. Haeberlin, L. R. Empey, N. Cui, H. Nolen, L. D. Jewell, and D. R. Friend. Colonic delivery of dexamethasone from a prodrug accelerates healing of colitis in rats without adrenal suppression.Gastroenterology 108:1688–1699 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. J. P. Brown, G. V. McGarraugh, T. M. Parkinson, R. E. Wingard, and A. B. Onderdonk. A polymeric drug for treatment of inflammatory bowel disease.J. Med. Chem. 26:1300–1307 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. R. P. Chan, D. J. Pope, A. P. Gilbert, P. J. Sacra, J. H. Baron, and J. E. Lennard-Jones. Studies of two novel sulfasalazine analogs, ipsalazide and balsalazide.Dig. Dis. Sci. 28:609–615 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. W. E. Fleig, G. Laudage, H. Sommer, W. Wellmann, E. F. Stange, and J. Riemann. Prospective, randomized, double-blind comparison of benzalazine and sulfasalazine in the treatment of active ulcerative colitis.Digestion 40:173–180 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. M. C. M. Rijk, H. J. J. van Lier, and J. H. M. van Tongeren. Relapse-preventing effect and safety of sulfasalazine and olsalazine in patients with ulcerative colitis in remission: A prospective, double-blind, randomized multicenter study.Am. J. Gastroenterol. 87:438–442 (1992).

    CAS  PubMed  Google Scholar 

  23. M. C. M. Rijk, A. van Schaik, and J. H. M. van Tongeren. Disposition of mesalazine from mesalazine-delivering drugs in patients with inflammatory bowel disease, with and without diarrhoea.Scand. J. Gastroenterol. 27:863–868 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. C. S. Leopold and D. R. Friend. In vitro study for the assessment of poly(L-aspartic acid) as a drug carrier for colon-specific drug delivery.Int. J. Pharm. 126:139–145 (1995).

    Article  CAS  Google Scholar 

  25. P. Rohdewald, H. Möllmann, J. Barth, J. Rehder, and H. Derendorf. Pharmacokinetics of dexamethasone and its phosphate ester.Biopharm. Drug Dispos. 8:205–212 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. H. Johansson and G. Nylander. Analysis of the ileocaecal emptying mechanism in the rat.Acta Chir. Scand. 134:296–302 (1968).

    CAS  PubMed  Google Scholar 

  27. M. Mori, Y. Shirai, Y. Uezono, T. Takahashi, Y. Nakamura, H. Makita, Y. Nakanishi, and Y. Imasato. Influence of specific gravity and food movement of granules in the gastrointestinal tract of rats.Chem. Pharm. Bull. 37:738–741 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. I. Moldenhauer, R. Hirschelmann, and M. Kurowski. Pharmacokinetic investigations with dexamethasone megadoses in rats.Pharmazie 46:468 (1991).

    CAS  PubMed  Google Scholar 

  29. D. R. Varma and T. L. Yue. Influence of protein-calorie malnutrition on the pharmacokinetics, placental transfer and tissue localization of dexamethasone in rats.Br. J. Pharmacol. 83:131–137 (1984).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. M. Rowland and T. N. Tozer.Clinical Pharmacokinetics: Concepts and Applications, 2nd ed., Lea and Febiger, Philadelphia, PA, 1989.

    Google Scholar 

  31. A. D. McLeod.Dextran Prodrugs of Glucocorticoids for Colon-Specific Drug Delivery, Doctoral thesis, 1992, University of California, San Francisco.

    Google Scholar 

  32. U. G. Eriksson and T. N. Tozer. Pharmacokinetic evaluation of regional drug delivery.Acta Pharm. Jugosl. 37:331–344 (1987).

    CAS  Google Scholar 

  33. A. D. McLeod and T. N. Tozer. Kinetic perspectives in colonic drug delivery. In D. R. Friend (ed.),Oral Colon-Specific Drug Delivery, CRC Press, Boca Raton, FL, 1992, pp. 85–114.

    Google Scholar 

  34. C. A. Hunt, R. D. MacGregor, and R. A. Siegel. Engineering targetedin vivo drug delivery. I. The physiological and physicochemical principles governing opportunities and limitations.Pharm. Res. 3:333–344 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. B. Haeberlin, W. Rubas, H. W. Nolen III, and D. R. Friend.In vitro evaluation of dexamethasone-β-D-glucuronide for colon-specific drug delivery.Pharm. Res. 10:1553–1562 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. J. English, J. Chakraborty, V. Marks, D. J. Trigger, and A. G. Thomson. Prednisolone levels in the plasma and urine: A study of two preparations in man.Br. J. Clin. Pharmacol. 2:327–332 (1975).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. D. Loew, O. Schuster, and E. H. Graul. Dose-dependent pharmacokinetics of dexamethasone.Eur. J. Clin. Pharmacol. 30:225–230 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. C. P. Ogorek and R. S. Fisher. Differentiation between Crohn's disease and ulcerative colitis.Med. Clin. North Am. 78:1249–1258 (1994).

    CAS  PubMed  Google Scholar 

  39. S. B. Hanauer and J. B. Kirsner. Medical therapy in ulcerative colitis. In J. B. Kirsner and R. G. Shorter (eds.),Inflammatory Bowel Disease, 3rd ed., Lea and Febiger, Philadelphia, PA, 1988, pp. 449–450.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leopold, C.S., Friend, D.R. In vivo pharmacokinetic study for the assessment of poly(L-aspartic acid) as a drug carrier for colon-specific drug delivery. Journal of Pharmacokinetics and Biopharmaceutics 23, 397–406 (1995). https://doi.org/10.1007/BF02353640

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353640

Key Words

Navigation