Skip to main content
Log in

Chemical defense of a rove beetle (Creophilus maxillosus)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The abdominal defensive glands ofC. maxillosus secrete a mixture (70μg/beetle) of isoamyl alcohol (I), isoamyl acetate (II), iridodial (III), actinidine (IV), dihydronepetalactone (VE), and (E)-8-oxocitronellyl acetate (X). When disturbed, the beetle everts the glands and revolves the abdomen so as to wipe the glands against the offending agent. Fecal fluid is commonly emitted at the same time and may become added to the glandular material. Ants (Formica exsectoides) are effectively fended off by the beetle and were shown in bioassays (Monomorium destructor) to be repelled by the four major components of the secretion (II, III, X, VE); the principal component (VE) was the most active. Some anatomical features of the glands are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellas, T.E., Brown, W.V., andMoore, B.P. 1974. The alkaloid actinidine and plausible precursors in defensive secretions of rove beetles.J. Insect Physiol. 20:277–280.

    Google Scholar 

  • Bettini, S. (ed.). 1978. Arthropod Venoms. Handbook of Experimental Pharmacology, Vol.48. Springer-Verlag, Berlin.

    Google Scholar 

  • Blum, M.S., Crewe, R.M., andPasteels, J.M. 1971. Defensive secretion ofLomechusa strumosa, a myrmecophilous beetle.Ann. Entomol. Soc. Am. 64:975–976.

    Google Scholar 

  • Boch, R., Shearer, D.A., andStone, B.C. 1962. Identification ofiso-amyl acetate as an active compound in the sting pheromone of the honey bee.Nature 195:1018–1020.

    PubMed  Google Scholar 

  • Brand, J.M., Blum, M.S., Fales, H.M., andPasteels, J.M. 1973. The chemistry of the defensive secretion of the beetle,Drusilla canaliculata.J. Insect. Physiol. 19:369–382.

    Google Scholar 

  • Clark, K., Fray, G.I., Jaeger, R.H., andRobinson, R. 1959. Synthesis ofd- andl-iso- iridomyrmecin and related compounds.Tetrahedron 6:217–224.

    Google Scholar 

  • Eisner, T. 1960. Defense mechanisms of arthropods. II. The chemical and mechanical weapons of an earwig.Psyche 67:62–70.

    Google Scholar 

  • Eisner, T. 1964. Catnip: Its raison d'être.Science 146:1318–1320.

    PubMed  Google Scholar 

  • Eisner, T. 1970. Chemical defense against predation in arthropods, pp. 157–217,in E. Sondheimer, and J.B. Simeone (eds.). Chemical Ecology. Academic Press, New York.

    Google Scholar 

  • Eisner, T., andMeinwald, Y.C. 1965. Defensive secretion of a caterpillar (Papilio).Science 150:1733–1735.

    Google Scholar 

  • Eisner, T., andMeinwald, J. 1966. Defensive secretion of arthropods.Science 153:1341–1350.

    Google Scholar 

  • Eisner, T., Meinwald, J., Monro, A., andGhent, R. 1961. Defense mechanisms of arthropods—I. The composition and function of the spray of the whip-scorpion,Mastigoproctus giganteus (Lucas) (Arachnida, Pedipalpida).J. Insect Physiol. 6:272–298.

    Google Scholar 

  • Eisner, T., Kluge, A.F., Carrel, J.E., andMeinwald, J. 1971. Defense of phalangid: liquid repellent administered by leg dabbing.Science 173:650–652.

    Google Scholar 

  • Eisner, T., Hill, D., Goetz, M., Jain, S., Alsop, D., Camazine, S., andMeinwald, J. 1981. Antifeedant action ofZ-dilhydromatricaria acid from soldier beetles (Chauliognathus spp.)J. Chem. Ecol. 7:1149–1158.

    Google Scholar 

  • Ficini, J., andDangelo, J. 1976. Synthese de la (±)isodihydronepetalactone et de deux de ses diastereoisomers.Tetrahedron Lett. 1976:687–690.

    Google Scholar 

  • Grant, H.G., O'Regan, P.J., Park, R.J., andSutherland, M.D. 1980. Terpenoid chemistry XXIV. (1.R)-1-methoxymyodesert-3-ene, an iridoid constituent ofMyoporum deserti (Myoporaceae).Aust. J. Chem. 33:853–878.

    Google Scholar 

  • Heller, S.R., andMilne, G.W.A. 1978. EPA/NIH Mass Spectral Data Base, Vol. 1. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Jenkins, M.F. 1957. The morphology and anatomy of the pygidial glands ofDianus coerulescens Gyllenhal (Coleoptera: Staphylinidae).Proc. Entomol. Soc. London 32A:159–168.

    Google Scholar 

  • Kolbe, W., andProske, M.G. 1973.Iso-valeriansäure im Abwehrsekret vonZyras humeralis Grav. (Coleoptera, Staphylinidae).Entomol. Blätter 69:57–60.

    Google Scholar 

  • Meinwald, J. 1954. The degradation of nepetalactone.J. Amer. Chem. Soc. 76:4571–4573.

    Google Scholar 

  • Meinwald, J., Jones, T.H., Eisner, T., andHicks, K. 1977. New methylcyclopentanoid terpenes from the larval defensive secretion of a chrysomelid beetle (Plagiodera versicolora).Proc. Natl. Acad. Sci. U.S.A. 74:2189–2192.

    PubMed  Google Scholar 

  • Nakanishi, K., Goto, T., Ito, S., Natori, S., andNozoe, S. (eds.). 1974. Natural Products Chemistry, Vol. 1. Academic Press, New York, pp. 48–59.

    Google Scholar 

  • Noirot, C., andQuennedey, A. 1974. Fine structure of insect epidermal glands.Annu. Rev. Entomol. 19:61–80.

    Google Scholar 

  • Pasteels, J.M. 1968a. Les glandes tégumentaires des staphylins termitophiles. II. Les genresTermitellodes, Termella etNasutitella (Aleocharinae, Corotocini, Termitogastrina).Insectes Soc. 15:337–358.

    Google Scholar 

  • Pasteels, J.M. 1968b. Le système glandulaire tégumentaire des Aleocharinae (Coleoptera, Staphylinidae) et son evolution chez des espèces termitophiles du genreTermitella.Arch. Biol. (Liege) 79:381–469.

    Google Scholar 

  • Pasteels, J.M. 1969. Les glandes tégumentaires des staphylins termitophiles. III. Les aleocharinae des genresTermitophillus (Corotocini, Corotocina),Perinthodes, Catalina (Termitonannini, Perinthina),Termitusa (Termitohospitini, Termitusina).Insectes Soc. 16:1–26.

    Google Scholar 

  • Remold, H. 1962. Über die biologische Bedeutung der Duftdrüsen bei Landwanzen (Geocorisae).Z. Vergl. Physiol. 45:636–694.

    Google Scholar 

  • Robinson, R., Jaeger, R.H., andClark, K. 1962. 2,6-Dimethyloct-2-ene-1,8-dial.Chem. Abstr. Service 57:P2077e.

    Google Scholar 

  • Sakan, T., Isoe, S., Hyeon, S.B., Katsumura, R., andMaeda, T. 1965. The exact nature of matatabilactone and the terpenes ofNepeta cataria.Tetrahedron Lett. 1965:4097–4102.

    Google Scholar 

  • Schildknecht, H., Krauss, D., Connert, J., Essenbreis, H., andOrfanides, N. 1975. Das Spreitungsalkaloid Stenusin aus dem KurzflüglerStenus comma (Coleoptera: Staphylinidae).Angew. Chem. 87:421–422.

    Google Scholar 

  • Stenhagen, E., Abrahamsson, S.A., andMcLafferty, F.W. 1974. Registry of Mass Spectral Data, Vol. 1. John Wiley & Sons, New York.

    Google Scholar 

  • Tschinkel, W.R. 1975. A comparative study of the chemical defensive system of Tenebrionid beetles. Defensive behavior and ancillary features.Ann. Entomol. Soc. Am. 68:439–453.

    Google Scholar 

  • Weatherston, J., andPercy, J.E. 1978. Venoms of coleoptera, pp. 511–554,in S. Bettini (ed.). Arthropod Venoms, Handbook of Experimental Pharmacology, Vol. 48. Springer-Verlag, Berlin.

    Google Scholar 

  • Wheeler, J.W., Happ, G.M., Araujo, J., andPasteels, J.M. 1972. γ-Dodecalactone from rove beetles.Tetrahedron Lett. 1972:4635–4638.

    Google Scholar 

  • Wolinsky, J., andEustace, E.J. 1972. Syntheses of the dihydronepetalactones.J. Org. Chem. 37:3376–3378.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper No. 69 of the seriesDefense Mechanisms of Arthropods. Paper No. 68 is: Eisner, T., and Aneshansley, D.J. 1982.Science 215:83.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jefson, M., Meinwald, J., Nowicki, S. et al. Chemical defense of a rove beetle (Creophilus maxillosus). J Chem Ecol 9, 159–180 (1983). https://doi.org/10.1007/BF00987779

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00987779

Key words

Navigation