Skip to main content
Log in

Allelochemic control of biomass allocation in interacting shrub species

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Aqueous leachates derived from canopy phyllodes of invasiveAcacia cyclops affected growth of a range of shrub species independently of nutrient input effects. All plants showed a sublethal phytotoxic response. Root mass was generally less adversely affected than shoot mass and, while decreasing significantly in response to the 10% concentration, showed no such response to the 1% solution. Root-shoot biomass ratios increased, except inEuphorbia burmannii, which may recognize intrinsic root architecture limitations on extensive exploitation of toxin-free soil. Application of surface plant litter from underA. cyclops canopies stimulated the production of basal stems inProtasparagus capensis andEriocephalus racemosus but was insufficient to significantly reduce root-shoot ratios. Plant growth inhibition was maximized by canopy leachate compounded by surface litter effects inAnthospermum spathulatum. The net effect of leachate at high concentration on biomass allocation in certain shrub species may help explain their patterns of association and disassociation withA. cyclops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achhireddy, N.R., Singh, M., Achhireddy, L.L., Nigg, H.N., andNagy, S. 1985. Isolation and partial characterization of phytotoxic compounds from Lantana (Lantana camara L.).J. Chem. Ecol. 11:979–988.

    Google Scholar 

  • Buta, J.G. andSpaulding, D.W.. 1989. Allelochemicals in tall fescue—abscisic and phenolic acids.J. Chem. Ecol. 15:1629–1636.

    Google Scholar 

  • Harborne, J.B. 1988. Introduction to Ecological Biochemistry. Academic Press, London.

    Google Scholar 

  • Harper, J.L. 1975. Allelopathy (a review).Q. Rev. Biol. 50:493–495.

    Google Scholar 

  • Hegazy, A.K., Mansour, K.S. andAbdel-Hady, N.F. 1990. Allelopathic and autotoxic effects ofAnastatica hierochuntica L.J. Chem. Ecol. 16:2183–2193.

    Google Scholar 

  • Heisey, R.M. 1990. Evidence for allelopathy by tree-of-heaven (Ailanthus altissima).J. Chem. Ecol. 16:2039–2055.

    Google Scholar 

  • Hewitt, E.J. andSmith, T.A. 1975. Plant Mineral Nutrition. English Universities Press Ltd., London.

    Google Scholar 

  • Keeley, J.E. andKeeley, S.C. 1989. Allelopathy and the fire-induced herb cycle, pp. 65–72,in S.C. Keeley (ed.). The California Chaparral. Paradigms Reexamined. No. 34 Science Series, Natural History Museum of Los Angeles County, Los Angeles.

    Google Scholar 

  • Kil, B.-S. andYun, K.W.. 1992. Allelopathic effects of water extracts ofArtemisia princeps var.orientalis on selected plant species.J. Chem. Ecol. 18:39–51.

    Google Scholar 

  • Leather, G.R. andEinhellig, F.A. 1988. Bioassay of naturally occurring allelochemicals for phytotoxicity.J. Chem. Ecol. 14:1821–1828.

    Google Scholar 

  • Lovett, J.V., Ryuntyu, M.Y. andLiu, D.L. 1989. Allelopathy, chemical communication, and plant defence.J. Chem. Ecol. 15:1193–1202.

    Google Scholar 

  • Lyu, S.-W. andBlum, U. 1990. Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in a split-root system.J. Chem. Ecol. 16:2429–2439.

    Google Scholar 

  • Macdonald, I.A.W., Kruger, F.J. andFerrar, A.A. (eds.) 1986. The Ecology and Management of Biological Invasions in Southern Africa. Oxford University Press, Cape Town.

    Google Scholar 

  • Martin, V.L., McCoy, E.L. andDick, W.A. 1990. Allelopathy of crop residues influences corn seed germination and early growth.Argon. J. 82:555–560.

    Google Scholar 

  • May, F.E. andAsh, J.E. 1990. An assessment of the allelopathic potential ofEucalyptus.Aust. J. Bot. 38:245–254.

    Google Scholar 

  • Molina, A., Reigosa, M.J. andCarballeira, A. 1991. Release of allelochemical agents from litter, throughfall, and topsoil in plantations ofEucalyptus globulus Labill in Spain.J. Chem. Ecol. 17:147–160.

    Google Scholar 

  • Mooney, H.A., Kummerow, J., Moll, E.J., Orshan, G., Rutherford, M.C. andSommerville, J.E.M. 1983. Plant form and function in relation to nutrient gradients, pp. 55–76,in J.A. Day (ed.). Mineral nutrients in mediterranean ecosystems. South African National Science Programmes Rep. 71. Council for Scientific and Industrial Research, Pretoria.

    Google Scholar 

  • Qasem, J.R. andHill, T.A. 1989a. On difficulties with allelopathy methodology.Weed Res. 29:345–347.

    Google Scholar 

  • Qasem, J.R. andHill, T.A. 1989b. Possible rôle of allelopathy in the competition between tomato,Senecio vulgaris L. andChenopodiun album L.Weed Res. 29:349–356.

    Google Scholar 

  • Rice, E.L. 1984. Allelopathy, 2nd ed. Academic Press, Orlando, Florida.

    Google Scholar 

  • Rice, E.L. 1986. Allelopathic growth stimulation, pp. 23–42,in A.R. Putnam and C.-S. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • Richardson, D.R. andWilliamson, G.B. 1988. Allelopathic effects of shrubs of the sand pine scrub on pines and grasses of the sandhills.For. Sci. 34:592–605.

    Google Scholar 

  • Rutherford, M.C. andBösenberg, J. de W. 1988. Some responses of indigenous western Cape vegetation to the Australian invasive,Acacia cyclops, pp. 631–636,in F. di Castri, Ch. Floret, S. Rambal, and J. Roy (eds.). Time Scales and Water Stress. International Union of Biological Sciences, Paris.

    Google Scholar 

  • Saville, D.J. 1990. Multiple comparison procedures: The practical solution.Am. Stat. 44:174–180.

    Google Scholar 

  • Singh, M., Tamma, R.V. andNigg, H.N. 1989. HPLC identification of allelopathic compounds fromLantana camara.J. Chem. Ecol. 15:81–89.

    Google Scholar 

  • Tang, C.-S. 1986. Continuous trapping techniques for the study of allelochemicals from higher plants, pp. 113–131,in A.R. Putnam and C.-S. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • Tukey, H.B., Jr. 1970. The leaching of substances from plants.Annu. Rev. Plant Physiol. 21:305–324.

    Google Scholar 

  • Whitfield, F.B., Shea, S.R., Gillen, K.J. andShaw, K.J. 1981. Volatile components from the roots ofAcacia pulchella R.Br. and their effect onPhytophthora cinnamomi Rands.Aust. J. Bot. 29:195–208.

    Google Scholar 

  • Williamson, G.B. 1990. Allelopathy, Koch's postulates, and the neck riddle, pp. 143–162,in J.B. Grace and D. Tilman (eds.). Perspectives on Plant Competition. Academic Press, San Diego.

    Google Scholar 

  • Williamson, G.B., Fischer, N.H., Richardson, D.R. andDe La Pena, A. 1989. Chemical inhibition of fire-prone grasses by fire-sensitive shrub,Conradina canescens.J. Chem. Ecol. 15:1567–1577.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutherford, M.C., Powrie, L.W. Allelochemic control of biomass allocation in interacting shrub species. J Chem Ecol 19, 893–906 (1993). https://doi.org/10.1007/BF00992526

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00992526

Key Words

Navigation