Skip to main content
Log in

Discrete time semigroup transformations with random perturbations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Let (X, ℬ) and (Y,C) be two measurable spaces withX being a linear space. A system is determined by two functionsf(X): X→ X andϕ:X×Y→X, a (small) positive parameterε and a homogeneous Markov chain {y n } in (Y,C) which describes random perturbations. States of the system, say {x ɛn X, n=0, 1,⋯}, are determined by the iteration relations:x ɛn+1 =f(x ɛn )+ɛϕ(x ɛn ,Yn+1) forn≥0, wherex ɛ0 =x 0 is given. Here we study the asymptotic behavior of the solutionx ɛn asε → 0 andn → ∞ under various assumptions on the data. General results are applied to some problems in epidemics, genetics and demographics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Billingsley, P. (1968).Convergence of Probability Measures, John Wiley & Sons, New York.

    Google Scholar 

  • Ethier, S. N., and Kurtz, T. G. (1986).Markov Processes, Wiley, New York.

    Google Scholar 

  • Freidlin, M. J., and Wentzell, A. D. (1979).Random Perturbations of Dynamical Systems, Springer-Verlag, New York.

    Google Scholar 

  • Gikhman, I. I. (1950, 1951). To the theory of differential equations of stochastic processes.Ukr. Math. J. 2, 37–63;3, 317–339.

    Google Scholar 

  • Gikhman, I. I. (1964). Differential equations with random functions in: winter school on probability and statistics.Acad. Sci. Ukr. Kiev, 41–86.

  • Gikhman, I. I., and Skorokhod, A. V. (1974).The Theory of Stochastic Processes, Vol. 1, Springer-Verlag, New York.

    Google Scholar 

  • Harris, T. H. (1963).The Theory of Branching Processes, Springer-Verlag, New York.

    Google Scholar 

  • Hille, E., and Phillips, R. (1957).Functional Analysis and Semigroups, AMS.

  • Hoppensteadt, F. C. (1975).Mathematical Theories of Populations: Demographics, Genetics and Epitemics, CBMS 20, SIAM Publications.

  • Hoppensteadt, F. C. (1982).Mathematical Methods of Populations Biology, Cambridge University Press, New York.

    Google Scholar 

  • Hoppensteadt, F. C. (1993).Analysis and Simulation of Chaotic Systems, Springer-Verlag, New York.

    Google Scholar 

  • Hoppensteadt, F., Khasminskii, R., and Salehi, H. (1994). Asymptotic solutions of linear partial differential equations of first order having random coefficients.Random Oper. Stoch. Eqs. 2, 61–78.

    Google Scholar 

  • Hoppensteadt, F., Salehi, H., and Skorokhod, A. (1995). Randomly perturbed Volterra integral equations and some applications.Stochast. Stochast. Rep. 54, 89–125.

    Google Scholar 

  • Hoppensteadt, F., Salehi, H., and Skorokhod, A. (1996). An averaging principle for dynamical systems in Hilbert space with Markov random perturbations.Stochast. Process. Appl. 61, 85–108.

    Article  Google Scholar 

  • Jacod, J., and Shiryaev, A. N. (1987).Limit Theorems for Stochastic Processes, Springer-Verlag, New York.

    Google Scholar 

  • Keyfitz, N., and Flieger, W. (1971).Population: Fact and Methods of Demography, Freeman, New York.

    Google Scholar 

  • Khasminskii, R. Z. (1966). On stochastic processes defined by differential equations with a small parameter.Theory Prob. Appl. 11, 211–228.

    Article  Google Scholar 

  • Khasminskii, R. Z. (1968a). On the averaging principle for Ito stochastic differential equations.Kybernetica 4, 260–279.

    Google Scholar 

  • Khasminskii, R. Z. (1968b). Stochastic stability of differential equations, Sijtnoff and Noordhoff Alphen aan den Righ, Netherland.

  • Krylov, N. N., and Rozovskii, B. (1979). On evaluation stochastic equations.Itogi nauki I Techniki, VINITI, 71–146.

  • Papanicolaou, G. C. (1968).Asymptotic Analysis of Transport Processes, BAMS 81.

  • Papanicolaou, G. C., Stroock, D. W., and Varadhan, S. R. S. (1977). Martingale approach to some limit theorems.Duke Univ. Math. Ser. 3, Durham, NC.

  • Pardoux, E. (1977). Filtrage de diffusions avec conditions frontières; caracterisation de la densité conditionelle.J. Stat. Process. Stochast. Proc. Grenoble, Lect. Notes Math. 636, 165–188.

    Google Scholar 

  • Pinsky, M. A. (1974). Multiplicative operator functionals and their asymptotic properties.Advanced in Probability 3, Marcel Dekker, New York, pp. 1–100.

    Google Scholar 

  • Protter, P. H. (1990).Stochastic Integration and Differential Equations, Springer-Verlag, New York.

    Google Scholar 

  • Rozovskii, B. L. (1985).Evolutionary Stochastic Systems, Nauka, Moscow.

    Google Scholar 

  • Sarafyan, V. V., and Skorokhod, A. V. (1987). On fast-switching dynamical systems.Theory Prob. Appl. 32, 595–607.

    Article  Google Scholar 

  • Skorokhod, A. V. (1965).Studies in the Theory of Random Processes, Addison-Wesley, MA.

    Google Scholar 

  • Skorokhod, A. V. (1989). Asymptotic methods in the theory of stochastic differential equations.Trans. Math. Monogr.78, AMS.

    Google Scholar 

  • Strook, D. W., and Varadhan, S. R. S. (1979).Multidimensional Diffusion Processes, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSF Grant DMS92-06677.

Supported in part by NSF Grant DMS93-12255.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoppensteadt, F., Salehi, H. & Skorokhod, A. Discrete time semigroup transformations with random perturbations. J Dyn Diff Equat 9, 463–505 (1997). https://doi.org/10.1007/BF02227491

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02227491

Key words

AMS 1980 subject classifications

Navigation