Skip to main content
Log in

Synthesis and crystal structures of heterobimetallic Fe-Cd, Fe-Zn, and Fe-In complexes containing hemilabile phosphorus/oxygen and silicon/oxygen bridging ligands

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The reactions of K[Fe{Si(OMe)3}(CO)3(P∼Y)][P∼Y=Ph2PCH2C(O)Ph, Ph2PCH2C(O)[(η-C5H4)FeCp] (Cp=η5-C5H5), Ph2P(CH2)2CN] with CdCl2·2.5H2O, ZnX 2 (X=Cl, I) or InCl3 afforded Fe-Cd-Fe or Fe-M(μ-X)2 M-Fe (M=Cd, Zn, In;X=Cl, I) and Fe-InCl2 complexes. Some of them contain an unusual and labile μ-η2-SiO alkoxysilyl bridge which may be associated with a bridging mode for the ketophosphine ligand (first such example structurally established), thus providing original results in bimetallic chemistry on the intramolecular coordination of oxygendonor functions ofchemically different hemilabile ligands firmly attached to a neighboring metal center. The structures of the trinuclear complex

(3), of the chlorobenzene solvate of the tetranuclear complex

(4a·C6H5Cl) and of [mer-(OC)3{(EtO)3Si}

(4e) have been determined by X-ray diffraction. Crystals of 3 are orthorhombic, space groupPbcn, witha=19.010(4),b=11.766(5),c=26.998(7)Å, andZ=4. Crystals of4a·C6H5Cl are monoclinic, space groupC2/c witha=22.455(3),b=17.680(2),c=16.627(4)Å, β=90.80(4)°, andZ=4. Crystals of4e are monoclinic, space groupC2/c witha=25.392(5),b=18.554(6),c=16.28(1)Å, β=120.73(3)°, andZ=4. The structures were solved using direct methods and Fourier difference techniques and refined by blocked full-matrix least squares toR=0.035 (R w =0.049) for 2719 observed reflections, toR=0.042 (R w =0.056) for 3082 observed reflections, and toR=0.057 (R w =0.075) for 1850 observed reflections for3, 4a·C6H5Cl and4e, respectively. The Fe-Zn complexes

(9a),

(9b) and

(9c) were prepared and characterized by spectroscopic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bader and E. Lindner (1991).Coord. Chem. Rev. 108, 27.

    Google Scholar 

  2. P. Braunstein, D. Matt, D. Nobel, S-E. Bouaoud, B. Carluer, D. Grandjean, and P. Lemoine (1986).J. Chem. Soc., Dalton Trans. 415;

  3. P. Braunstein, D. Matt, and Y. Dusausoy (1983).Inorg. Chem. 22, 2043;

    Google Scholar 

  4. J. C. Jeffrey and T. B. Rauchfuss (1979) ibid.18, 2658.

    Google Scholar 

  5. P. Braunstein (1991).Mater. Chem. Phys. 29, 33.

    Google Scholar 

  6. P. Braunstein, M. Knorr, A. Tiripicchio, and M. Tiripicchio-Camellini (1989).Angew. Chem. 101, 1414; (1989).Angew. Chem. Int. Ed. Engl. 28, 1361;

    Google Scholar 

  7. P. Braunstein, M. Knorr, B. E. Villarroya, and J. Fischer (1990).New J. Chem. 14, 583;

    Google Scholar 

  8. P. Braunstein, M. Knorr, H. Piana, and U. Schubert (1991).Organometallics 10, 828;

    Google Scholar 

  9. P. Braunstein, M. Knorr, E. Villarroya, A. DeCian, and J. Fischer (1991). ibid.10, 3714;

    Google Scholar 

  10. P. Braunstein, M. Knorr, U. Schubert, M. Lanfranchi, and A. Tiripicchio (1991).J. Chem. Soc., Dalton Trans. 1507;

  11. P. Braunstein, L. Douce, M. Knorr, M. Strampfer, M. Lanfranchi, and A. Tiripicchio (1992).ibid. 331;

  12. P. Braunstein, E. Colomer, M. Knorr, A. Tiripicchio, and M. Tiripicchio-Camellini (1992).ibid. 903;

  13. G. Reinhard, B. Hirle, U. Schubert, M. Knorr, P. Braunstein, A. DeCian, and J. Fischer (1993).Inorg. Chem. in press.

  14. P. Braunstein, T. M. Gomes Carneiro, D. Matt, F. Balegroune, and D. Grandjean (1989).J. Organomet. Chem. 367, 117.

    Google Scholar 

  15. S. S. Al-Juaid, C. Eaborn, A. Habtemariam, P. B. Hitchcock, and J. D. Smith (1992).J. Organomet. Chem. 437, 41;

    Google Scholar 

  16. W. Wojnowski, B. Becker, L. Walz, K. Peters, E.-M. Peters, and H.-G. von Schnering (1992).Polyhedron 11, 607.

    Google Scholar 

  17. H. Adams, N. A. Bailey, D. E. Fenton, I. G. Ford, S. J. Kitchen, M. G. Williams, P. A. Tasker, A. J. Leong, and L. F. Lindoy (1991).J. Chem. Soc., Dalton Trans. 1665;

  18. K. R. Adam, K. P. Dancey, B. A. Harrison, A. J. Leong, L. F. Lindoy, M. McPartlin, and P. A. Tasker (1983).J. Chem. Soc., Chem. Commun. 1351.

  19. S. C. Goel, M. Y. Chiang, and W. E. Buhro (1990).J. Am. Chem. Soc. 112, 6724.

    Google Scholar 

  20. W. N. Setzer, Y. Tang, G. J. Grant, and D. G. VanDerveer (1992).Inorg. Chem. 31, 1116.

    Google Scholar 

  21. R. D. Ernst, T. J. Marks, and J. A. Ibers (1977).J. Am. Chem. Soc. 99, 2090;

    Google Scholar 

  22. ibid. (1977)99, 2098.

    Google Scholar 

  23. F. Teixidor, L. Escriche, I. Rodriguez, J. Casabo, J. Rius, E. Molins, B. Martinez, and C. Miravitlles (1989).J. Chem. Soc., Dalton Trans. 1381;

  24. H. Leligny and J. C. Monier (1975).Acta Cryst. B31, 728 (and references cited).

    Google Scholar 

  25. C. Calvo and P. K. L. Au (1969).Can. J. Chem. 47, 3409;

    Google Scholar 

  26. W. Harrison and J. Trotter (1972).J.C.S. Dalton Trans. 956;

  27. T. M. Greaney, C. L. Raston, A. H. White, and E. N. Maslen (1975).ibid. 876;

  28. J. K. Shiba and R. Bau (1978).Inorg. Chem. 17, 3484;

    Google Scholar 

  29. A. Banerjee, C. J. Brown, P. C. Jain, and P. Gautam (1984).Acta Cryst. C40, 1161;

    Google Scholar 

  30. M. A. Romero, M. N. Moreno, J. Ruiz, M. P. Sanchez, and F. Nieto (1986).Inorg. Chem. 25, 1498;

    Google Scholar 

  31. R. Cini, G. Giorgi, A. Cinquantini, C. Rossi, and M. Sabat (1990).29, 5197;

    Google Scholar 

  32. S. Sogani, A. Singh, R. Bohra, R. C. Mehrotra, and M. Noltemeyer (1991).J. Chem. Soc., Chem. Commun. 738;

  33. M. Nieuwenhuyzen, H. Wen, and C. J. Wilkins (1992).Z. Anorg. Allg. Chem. 615, 143.

    Google Scholar 

  34. R. G. Goel, W. P. Henry, and R. C. Srivastava (1981).Inorg. Chem. 20, 1727.

    Google Scholar 

  35. F. I. Aigbirhio, S. S. Al-Juaid, C. Eaborn, A. Habtemariam, P. B. Hitchcock, and J. D. Smith (1991).J. Organomet. Chem. 405, 149.

    Google Scholar 

  36. B. Neumüller (1989).Chem. Ber. 122, 2283;

    Google Scholar 

  37. H. J. Haupt, W. Wolff, and H. Preut (1976).Inorg. Chem. 15, 2920.

    Google Scholar 

  38. A. T. T. Hsieh and M. J. Mays (1972).J. Chem. Soc., Dalton Trans. 516;

  39. L. M. Clarkson, N. C. Norman, and L. J. Farrugia (1991).Organometallics 10, 1286;

    Google Scholar 

  40. L. M. Clarkson, W. Clegg, D. C. R. Hockless, N. C. Norman, L. J. Farrugia, S. G. Bott, and J. L. Atwood (1991).J. Chem. Soc., Dalton Trans. 2241.

  41. P. Braunstein, M. Knorr, M. Strampfer, A. DeCian, and J. Fischer (unpublished results).

  42. M. Pfeffer, P. Braunstein, and J. Dehand (1974).Spectrochim. Acta 30A, 331.

    Google Scholar 

  43. D. H. Brown and D. T. Stewart (1970).J. Inorg. Nucl. Chem. 32, 3751.

    Google Scholar 

  44. B. N. Storhoff (1972).J. Organomet. Chem. 43, 197.

    Google Scholar 

  45. F. G. Mann and I. T. Miller (1952).J. Chem. Soc. 4453.

  46. B. A. Frenz,in H. Schenk, R. Olthof-Hazekamp, H van Koningsveld, and G. C. Bassi (eds.),Computing in Crystallography (Delft University Press, Delft, 1978), pp. 64–71.

    Google Scholar 

  47. N. Walker and D. Stuart (1983).Acta Crystallogr. 39, 158.

    Google Scholar 

  48. International Tables for X-Ray Crystallography, Vol. 4 (Kynoch Press, Birmingham, 1974).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part 21 in the Series: Complexes with Functional Phosphines. Part 20: P. Braunstein, S. Coco Cea, A. DeCian, and J. Fischer (1992).Inorg. Chem. 31, 4203.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balegroune, F., Braunstein, P., Douce, L. et al. Synthesis and crystal structures of heterobimetallic Fe-Cd, Fe-Zn, and Fe-In complexes containing hemilabile phosphorus/oxygen and silicon/oxygen bridging ligands. J Clust Sci 3, 275–296 (1992). https://doi.org/10.1007/BF01028547

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01028547

Key words

Navigation